PCI Professional Consulting, Ilc. Consulting Engineers

New Jersey:

Octagon 10 Office Center 1719 Route 10, Suite 225 Parsippany, NJ 07054

New York:

152 Brady Avenue Hawthorne, NY 10532

Phone:

973.683.0044

Fax:

973.683.0077

Email:

general.info@pci-engineers.com

Web:

www.pci-engineers.com

VILLAGE OF TARRYTOWN WESTCHESTER COUNTY, NEW YORK

2022 Annual Water Quality Report (SUPPLEMENT)

Tarrytown Water District PWS ID Number NY5903461

May 2023

Visit us online at: www.pci-engineers.com

Table of Contents

Full Chemistry	3
SOCs & VOCs	4
Lead & Copper	5
Radiological Results	6
TTHMs & HAA5s	7
Pathogen Data	8
Turbidity & Total Coliform	9
Water Quality	10
Water Consumption	11

FULL CHEMISTRY

Full chemistry monitoring is required once every calendar year at Village of Tarrytown entry point.

ANALYTICAL REPORT

Job Number: 420-231108-1

Job Description: Village of Tarrytown

For:
Village of Tarrytown
401 Neperan Road
Shaft 10
Tarrytown, NY 10591

Attention: Mr. Steve G Cowles

Mary Hernandez

Customer Service Manager reports@envirotestlaboratories.com

08/23/2022

NYSDOH ELAP does not certify for all parameters. EnviroTest Laboratories does hold certification for all analytes where certification is offered by ELAP unless otherwise specified in the Certification Information section of this report Pursuant to NELAP, this report may not be reproduced, except in full, without written approval of the laboratory. EnviroTest Laboratories LLC certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative. All services performed by EnviroTest Laboratories LLC are subject to our Terms and Conditions available at Envirotestlabs/terms.com. As of 12/23/19, EnviroTest Laboratories LLC acquired substantially all of the lab and testing assets of EnviroTest Laboratories Inc, including its name.

EnviroTest Laboratories, LLC. Certifications and Approvals: NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554

METHOD SUMMARY

Client: Village of Tarrytown Job Number: 420-231108-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
ICP Metals by 200.7 200 Series Drinking Water Prep Determination Step	EnvTest EnvTest	EPA 200.7 Re	v 4.4 EPA 200.7/200.8
ICPMS Metals by 200.8 200 Series Drinking Water Prep Determination Step Total Metals Digestion for 200.8	EnvTest EnvTest EnvTest	EPA 200.8 Re	v.5.4 EPA 200.7/200.8 EPA 200.8 Rev.5.4
Mercury in Water by CVAA Digestion for CVAA Mercury in Waters	EnvTest EnvTest	EPA 245.1 Re	v.3.0 EPA 245.1
Anions by Ion Chromatography	EnvTest	EPA 300.0 Re	v. 2.1
Anions by Ion Chromatography	EnvTest	EPA 300.0 Re	v. 2.1
Field Sampling	EnvTest	EPA Field Sar	mpling
Alkalinity, Titration Method	EnvTest	SM22 SM 232	20B2011
Corrosivity LSI Calculation	EnvTest	SM20 SM 233	30B-2016
Hardness by Calculation	EnvTest	SM20 SM 234	IOB-97,-11
Apparent Color	EnvTest	SM21 SM212	0B-2011
Turbidity	EnvTest	SM21 SM213	0B-2011
Odor, Threshold Test	EnvTest	SM20 SM215	0B
Conductivity, Specific Conductance	EnvTest	SM22 SM251	0B-2011
Total Dissolved Solids (Dried at 180 °C)	EnvTest	SM22 SM254	0C-2015
Cyanide, Total: Colorimetric Method Cyanide: Distillation	EnvTest EnvTest	SM22 SM450	0 CNE 2016 SM22 SM4500CNC-(-99)
Nitrite by Colormetric	EnvTest	SM22 SM450	0 NO2 B-11
Chloride by Silver Nitrate Titration	EnvTest	SM22 SM450	0CL-B-11,

Lab References:

EnvTest = EnviroTest

Method References:

EPA = US Environmental Protection Agency

SM20 = "Standard Methods For The Examination Of Water And Wastewater", 20th Edition."

SM21 = "Standard Methods For The Examination Of Water And Wastewater", 21st Edition

SM22 = "Standard Methods for the Examination of Water and Wastewater", 22nd Edition

METHOD / ANALYST SUMMARY

Client: Village of Tarrytown Job Number: 420-231108-1

Method	Analyst	Analyst ID
EPA 200.7 Rev 4.4	Cusack, Renee	RC
EPA 200.8 Rev.5.4	Ratka, Angela	AR
EPA 245.1 Rev.3.0	Bracco, Olivia	ОВ
SM20 SM 2340B-97,-11	Cusack, Renee	RC
EPA Field Sampling	Rega, Louis	LR
EPA 300.0 Rev. 2.1	Ratka, Angela	AR
SM22 SM 2320B2011	Alonzo, Lauren	LA
SM20 SM 2330B-2016	Cusack, Renee	RC
SM21 SM2120B-2011	An, Chulwoo	CA
SM21 SM2130B-2011	An, Chulwoo	CA
SM20 SM2150B	An, Chulwoo	CA
SM22 SM2510B-2011	Bracco, Olivia	ОВ
SM22 SM2540C-2015	Oates, Kobe	КО
SM22 SM4500 CNE 2016	Ratka, Angela	AR
SM22 SM4500 NO2 B-11	Ratka, Angela	AR
SM22 SM4500CL-B-11,	Bracco, Olivia	ОВ

SAMPLE SUMMARY

Client: Village of Tarrytown Job Number: 420-231108-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
420-231108-1	Full Chemistry- POE	Drinking Water	08/02/2022 0945	08/02/2022 1215

Mr. Steve G Cowles

Job Number: 420-231108-1

Village of Tarrytown 401 Neperan Road Shaft 10

Tarrytown, NY 10591

 Client Sample ID:
 Full Chemistry- POE
 Date Sampled:
 08/02/2022 0945

 Lab Sample ID:
 420-231108-1
 Date Received:
 08/02/2022 1215

Client Matrix: Drinking Water

Percent Solids:

Analyte	Result/Qualifier	Unit	RL	Dilution
Method: Field Sampling		Date Analyzed:	08/02/2022 0945	
Field pH	7.57	SU		1.0
Field Temperature	16	Celsius		1.0

Mr. Steve G Cowles

Job Number: 420-231108-1

Village of Tarrytown 401 Neperan Road Shaft 10 Tarrytown, NY 10591

 Client Sample ID:
 Full Chemistry- POE
 Date Sampled:
 08/02/2022 0945

 Lab Sample ID:
 420-231108-1
 Date Received:
 08/02/2022 1215

Analyte	Result/Qual	lifier	Unit	MDL	RL	Dilution
Method: 300.0 Rev. 2.1			Date Ar	nalyzed: 08/02/2	2022 1743	
Nitrate as N	0.231	J	mg/L	0.0300	0.250	1.0

Mr. Steve G Cowles

Job Number: 420-231108-1

Village of Tarrytown

401 Neperan Road Shaft 10

Tarrytown, NY 10591

 Client Sample ID:
 Full Chemistry- POE
 Date Sampled:
 08/02/2022 0945

 Lab Sample ID:
 420-231108-1
 Date Received:
 08/02/2022 1215

Analyte	Result/Qualifier	Unit	NONE	NONE	Dilution
Method: SM 2330B-2016		Date Analy	yzed: 08/21/	2022 1745	
Langelier Index	-2.11	NONE			1.0

Mr. Steve G Cowles

Job Number: 420-231108-1

Village of Tarrytown 401 Neperan Road Shaft 10 Tarrytown, NY 10591

 Client Sample ID:
 Full Chemistry- POE
 Date Sampled:
 08/02/2022 0945

 Lab Sample ID:
 420-231108-1
 Date Received:
 08/02/2022 1215

Analyte	Result/Qualifier	Unit	RL	RL	Dilution
Method: 200.7 Rev 4.4		Date Ar	nalyzed: 08	3/09/2022 1803	
Prep Method: 200.7/200.8		Date Pr	epared: 08	3/09/2022 1000	
Calcium	5720	ug/L	2500	2500	1.0
Iron	<60.0	ug/L	60.0	60.0	1.0
Magnesium	<2500	ug/L	2500	2500	1.0
Sodium	10000	ug/L	200	200	1.0
Method: 200.8 Rev.5.4		Date Ar	nalyzed: 08	3/12/2022 1210	
Silver	<1.00	ug/L	1.00	1.00	1.0
Arsenic	<1.40	ug/L	1.40	1.40	1.0
Beryllium	<0.300	ug/L	0.300	0.300	1.0
Cadmium	<1.00	ug/L	1.00	1.00	1.0
Chromium	<7.00	ug/L	7.00	7.00	1.0
Copper	<10.0	ug/L	10.0	10.0	1.0
Manganese	<10.0	ug/L	10.0	10.0	1.0
Nickel	<0.500	ug/L	0.500	0.500	1.0
Lead	<1.00	ug/L	1.00	1.00	1.0
Antimony	<0.400	ug/L	0.400	0.400	1.0
Thallium	<0.300	ug/L	0.300	0.300	1.0
Zinc	<10.0	ug/L	10.0	10.0	1.0
Barium	15.3	ug/L	2.00	2.00	1.0
Selenium	<2.00	ug/L	2.00	2.00	1.0
Method: 245.1 Rev.3.0		Date Ar	,	3/18/2022 1645	
Prep Method: 245.1		Date Pr	epared: 08	3/05/2022 1430	
Mercury	<0.200	ug/L	0.200	0.200	1.0
Method: SM 2340B-97,-11		Date Ar	nalyzed: 08	3/21/2022 1729	
Calcium hardness as calcium carbonate	14.3	mg/L	6.25	6.25	1.0
Total Hardness (as CaCO3)	<16.5	mg/L	16.5	16.5	1.0
Method: 300.0 Rev. 2.1		Date Ar	nalyzed: 08	3/02/2022 1743	
Sulfate	<5.00	mg/L	5.00	5.00	1.0
Fluoride	0.719	mg/L	0.500	0.500	1.0
Method: SM 2320B2011		Date Ar	nalyzed: 08	3/11/2022 0937	
Alkalinity to pH 4.5 mg/l CaCO3	17.4	mg/L	5.00	5.00	1.0
Method: SM2120B-2011		Date Ar	,	3/02/2022 1339	
Apparent Color	5.00	Pt-Co	5.00	5.00	1.0
pH@color measurement	7.14	SU	2.00	2.00	1.0
Method: SM2130B-2011		Date An	,	3/02/2022 1340	
Turbidity	0.240	NTU	0.100	0.100	1.0

Mr. Steve G Cowles

Job Number: 420-231108-1

Village of Tarrytown 401 Neperan Road Shaft 10 Tarrytown, NY 10591

 Client Sample ID:
 Full Chemistry- POE
 Date Sampled:
 08/02/2022 0945

 Lab Sample ID:
 420-231108-1
 Date Received:
 08/02/2022 1215

Analyte	Result/Qualifier	Unit	RL	RL	Dilution	
Method: SM2150B		Date Anal	yzed: 08/02/	2022 1410		
Odor	1.00	T.O.N.	1.00	1.00	1.0	
Temp @ Odor Measurement	60.0	Degrees C	5.00	5.00	1.0	
Method: SM2510B-2011		Date Anal	yzed: 08/04/	2022 1051		
Specific Conductance	87.5	umhos/cm	2.00	2.00	1.0	
Method: SM2540C-2015		Date Anal	yzed: 08/04/	2022 1605		
Total Dissolved Solids	1540	mg/L	5.00	5.00	1.0	
Method: SM4500 CNE 2016		Date Anal	yzed: 08/09/	2022 1149		
Prep Method: SM4500CNC-(-99)		Date Prep	ared: 08/08/	08/08/2022 1623		
Cyanide, Total	<0.00500	mg/L	0.00500	0.00500	1.0	
Method: SM4500 NO2 B-11		Date Anal	yzed: 08/02/	2022 1849		
Nitrite as N	<0.0100	mg/L	0.0100	0.0100	1.0	
Method: SM4500CL-B-11,		Date Anal	yzed: 08/10/2	2022 1633		
Chloride	13.4	mg/L	5.00	5.00	1.0	

DATA REPORTING QUALIFIERS

Client: Village of Tarrytown Job Number:

Lab Section	Qualifier	Description
General Chemistry		
	.l	Result is less than the RL but greater than or equal to the MDL
	Ü	and the concentration is an approximate value

Certification Information

Client: Village of Tarrytown Job Number:

The following analytes are Not Part of the ELAP scope of accreditation:

Sulfur, Tungsten, Bicarbonate Alkalinity, 7 Day BOD 5210C, 28 Day BOD, Soluble BOD, Carbon Dioxide, Carbonate Alkalinity, CBOD Soluble, Chlorine, Cyanide (WAD), Ferrous Iron, Ferric Iron, Total Nitrogen, Total Organic Nitrogen, Dissolved Oxygen, pH, Solids (Fixed), Solids (Percent), Solids (Percent Moisture), Solids (Percent Volatile), Solids (Volatile Suspended), Temperature, TKN (Soluble), COD (Soluble), Total Inorganic Carbon, 2-Aminopyridine, 3-Picoline, 1-Methyl-2-pyrrilidinone, Aziridine, Dimethyl sulfoxide, 1-Chlorohexane, 1,2,4,5-Tetramethylbenzene, 4-Ethyl toluene, p-Diethylbenzene, Iron Bacteria, Salmonella, Sulfur Reducing Bacteria, & UOD (Ultimate Oxygen Demand).

The following analytes are Not Part of ELAP Potable Water scope of accreditation:

Ammonia (SM 4500NH3G), Biochemical Oxygen Demand (SM 5210B), Chemical Oxygen Demand (EPA 410.4), Dissolved Oxygen (SM 4500 O C), TKN (351.2), Phosphorus (365.3), Nitrate-Nitrite (353.2), Settable Solids (SM 2540F), Total Suspended Solids (SM 2540 C), m-Xylene & p-Xylene (502.2, 524), o-Xylene (502.2, 524), Sulfide (SM4500SD), Acenaphthene (525.2), Acenaphthylene (525.2), Fluoranthene (525.2), Fluorene (525.2), Phenanthrene (525.2), Anthracene (525.2), Pyrene (525.2), Benzo[a]anthracene (525.2), Benzo[b]fluoranthene (525.2), Benzo[g,h,i]perylene (525.2), Benzo[k]fluoranthene (525.2), Indeno[1,2,3-cd]pyrene (525.2), & Dibenz(a,h)anthracene (525.2). Pyridine

The following analytes are Not Part of ELAP Solid and Hazardous Waste scope of accreditation

Ammonia (SM 4500NH3G), TKN (351.2), Phosphorus (365.3), 1,2-Dichloro-1,1,2-trifluoroethane (8260), & Chlorodifluoromethane (8260).

The following analytes are Not Part of ELAP Non Potable Water scope of accreditation

Dissolved Organic Carbon (5310C), Mecoprop (8151A), MCPA (8151A).

Definitions and Glossary

Client: Village of Tarrytown Job Number:

Abbreviation	These commonly used abbreviations may or may not be present in this report.
%R	Percent Recovery
DL, RA, RE	Indicates a Dilution, Reanalysis or Reextraction.
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit - an estimate of the minimum amount of a substance that an analytical process can reliably detect. A MDL is analyte- and matrix-specific and may be laboratory-dependent.
ND	Not detected at the reporting limit (or MDL if shown).
QC	Quality Control
RL	Reporting Limit - the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
RPD	Relative Percent Difference - a measure of the relative difference between two points

[ga]

CHAIN OF CUSTODY

REPORT# (Lab Use Only)

Enviro lest		76	CITA	7117	. •				ı Oı	יי										
Laborator	ies 🗀	inc	Lab Name				borato												231	<u> 807/</u>
Laboracor	.00,		Address & Phone	315	Fulle	rton .	Avenu	e, Nev	wburg	h, Nev	w Yor	k 125	50 845	5-562-	0890					
PROJECT REFERENCE Inorganics & Me	tale	SPILL NO.	PROJECT LOCATION Effluent Pond	T	MATRI: TYPE						REQ	UIRED	ANAL	YSES					PAGE 1 of	1 1
ENVIROTEST PROJECT MANAGER		PIN NO.	CONTRACT NO.	П	T	Т	g	귱	덜	i,	þer	cid	ĕ	Ę	iği M	rile	cid	ပ္ပ		<u> </u>
Joyce Esposit	to						ine	ISS H	Der H	Sulfi	Liter Ambe	ric A	Hydr	Liter Plastic	l Plas	Ste	ric A	IZN /	TURNA	AROUND TIME
CLIENT (SITE) PM Steve Cowle	s	914-906-3224	CLIENT FAX	JICATE	ter) Indicate		Total # of Containers	40ml Glass HCL	Liter Amber HCL	250ml Amber Sulfuric	Lite	250ml Plastic Nitric Acid	250ml Plastic Sod. Hydrox.	Life	250ml Plastic	125ml Plastic Sterile	Liter Plastic Sulfuric Acid	250mi Pias NAOH/ZN ACC	NORMAL	, , , , , , , , , , , , , , , , , , ,
Village of Tarryt	own	Once per year	(Entry Point)	GRAB (G) IN	D (Drinking Water) or W (Waste Water)		tal # o			250m		250ml F	Oml Plas			125	iter Pla	250ml	QUICK	
CLIENT ADDRESS 401 Neperan Road Sha	ift 10 Tern	vtown, NY 10591		8 6	y or W	SOLID	1	<u> </u>	<u> </u>				25			<u> </u>			VERBAL	
COMPANY CONTRACTING THIS WO				SITE (C)	ing Water	SOLID OR SEMISOLID													#OF COOLERS	
SAMPLE DATE TIME		SAMPLE IDENTIFICA	TION	COMPOSITE	(Drink	SOLID			N	UMBE	R OF	CONT	AINER	S SUB	MITTE	D			R	EMARKS
8/2/22 9:45m	Fuci	CHEMISTRY	-POE	G	D	9 0	4	Ī				1	1	2					Color, Turb, Co Ca-Hard,	ond, Corr.,TDS, Alk,
0,5,5				\sqcap	\Box	\top														d, N02, N03, Sulfat
		······································		II		T													Sb, As, Ba, Be, Pb, Mg, Mn, Hg	Cd, Ca, Cr, Cu, Fe, . Ni. Se. Aq
					П	T													Na, TI, Zn, Odo	
				\sqcap															Field Ph	ield Temp 16 ^C
																		~	Initials/Date	
	- 61 1000		THUR MA	П	\Box			-											7.5	7
	- 10 10111																		1.0	1 P04
	Full Cher	420-231108-E-1																***************************************		
	Date Sam	pled: 8/2/2022 420-19	\ -	ſΤ																
		420-1	954508	\sqcap		\top														
				П																
RELINQUISHED BY: (SICNA	TURE)	COMPANY - AMYTOU	B/2/22	TIME	ا دِ	3	RECE	IVED E	3Y: (SIC	SNATU	IRE)	L			CC	OMPAN	17		DATE	TIME
SAMPLED BY: (SIGNATURE		COMPANY	Blelze	TIME	45		RECE	IVED E	BY: (SIC	SNATU	IRE)		***************************************		CC	OMPAN	1Y		DATE	TIME
RELINQUISHED BY: (SIGNA	TURE)	COMPANY	DATE	TIME	10	100	RECE	IVED E	3Y: (SIC	SNATU	IRE)				CC	MPAN	1Y		DATE	TIME
													Fis	d Co	·	Time				
NOTE: RECEIVED FOR LABORATO	ORY BY:	DATE , TIME	CUSTODY INTACT	Coole	r Tem	p:.	LABO	RATOF	RYREN	/ARKS	: 1	CE_V	<u>/Fiel</u>	d Sei	CL2_		: Reveiw	ed by		
(SIGNATURE)		8/2/22/12/5	YES NO	0	,	•						-	_ _		_			-		

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Village of Tarrytown Job Number: 420-231108-1

Login Number: 231108

Question	T/F/NA	Comment
Samples were collected by ETL employee as per SOP-SAM-1	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is recorded.	True	0.1 C
Cooler Temp. is within method specified range.(0-4 C PW, 0-6 C NPW, or BAC <10 C	True	
If false, was sample received on ice within 6 hours of collection.	NA	
Based on above criteria cooler temperature is acceptable.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

SOCs & VOCs

Synthetic Organic Compounds (SOCs) and Volatile Organic Compounds (VOCs) completed once per year for all source water entry points

(Samples are collected and distributed by the Westchester County Water District)

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT 18 - DEL AQU

WEST LAKE DR

VALHALLA, NY

Collection Point: ENTRY POINT

ID of Source: DELAQ

addt'l Report To:

Agency: Westchester County Water Agency

432 Michealian Office Building

White Plains, NY 10601

Attn: Amanda Delgado

Received By: KB JLM

Bottle No: K848 849 850 FB1367 Q4357

4354+ N524 33 66 P624 1248+

M2247 2246+

Collected By: DELGADO

Collection Date: 10/24/2022 AT 9:34:00AM

Submitted On: 10/24/2022 AT 11:36:00AM

PWS No.: 5903488

Type Descriptor: 022

Source ID: 000

pH:

Free Cl2:

Residual Cl2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment:SOC/VOC

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics							
	actables - 504.1						
504.1	1,2-Dibromo-3-chloropropane	< LOQ		ug/L	0.01	11/04/2022	
504.1	1,2-Dibromoethane	< LOQ		ug/L	0.01	11/04/2022	
Pesticide:	s - <i>EPA 508</i>						
508	Aldrin	< LOQ		ug/L	0.05	10/28/2022	RH
508	Chlordane	< LOQ		ug/L	0.20	10/28/2022	RH
508	Dieldrin	< LOQ		ug/L	0.02	10/28/2022	RH
508	Endrin	< LOQ		ug/L	0.01	10/28/2022	RH
508	Heptachlor	< LOQ		ug/L	0.02	10/28/2022	RH
508	Heptachlor Epoxide	< LOQ		ug/L	0.02	10/28/2022	RH
508	Lindane	< LOQ		ug/L	0.02	10/28/2022	RH
508	Methoxychlor	< LOQ		ug/L	0.10	10/28/2022	RH
508	PCB's - Screen	Not Analyzed		ug/L	0.10	10/28/2022	RH
508	Propachlor	Not Analyzed		ug/L	0.04	10/28/2022	RH
508	Toxaphene	< LOQ		ug/L	1.00	10/28/2022	RH
Surrogate 2 sub-contrac	cide analysis performed by NYSDOH ELAP #115 4,4,5,6-Tetrachloro-m-xylene recovered at 112%, sted results provided confirms Quality Control ac s - EPA 515.1	within the +/-3	30% acceptai	nce range	e. Quality A		
515.1	2,4,5-TP (Silvex)	< LOQ		ug/L	0.2	11/07/2022	
515.1	2,4-D	< LOQ		ug/L	0.1	11/07/2022	
515.1	Dalapon	< LOQ		ug/L	1	11/07/2022	
DL = Detectio	n Limit LOQ = Limit of Quantitation	J=valu	ıe is an estim	nate		H = exceeds ho	lding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 2

These analytical results relate only to the sample identified in this report.

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
515.1	Dicamba	< LOQ		ug/L	0.1	11/07/2022	
515.1	Dinoseb	< LOQ		ug/L	0.2	11/07/2022	
515.1	Pentachlorophenol	< LOQ		ug/L	0.04	11/07/2022	
515.1	Picloram	< LOQ		ug/L	0.1	11/07/2022	
Organic C	Chemicals - EPA 525.2						
525.2	Alachlor	< LOQ		ug/L	0.2	10/28/2022	RH
525.2	Atrazine	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Benzo(a)pyrene	< LOQ		ug/L	0.02	10/28/2022	RH
525.2	bis(2-Ethylhexyl)adipate	< LOQ		ug/L	0.6	10/28/2022	RH
525.2	bis(2-Ethylhexyl)phthalate	< LOQ		ug/L	0.6	10/28/2022	RH
525.2	Butachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Hexachlorobenzene	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Hexachlorocyclopentadiene	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Metolachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Metribuzin	< LOQ		ug/L	0.10	10/28/2022	RH
	Propachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Simazine	< LOQ		ug/L	0.07	10/28/2022	RH

Note: Semi-Volatile Organic Compounds by GC/MS analysis performed by NYSDOH ELAP #11549. Quality Assurance review of the sub-contracted results provided confirms Quality Control acceptance criteria have satisfied method requirements. RWHJr

Carban	nate Pesticides - EPA 531.1					
531.1	3-Hydroxy Carbofuran	< LOQ	ug/L	0.5	11/21/2022	RH
531.1	Aldicarb	< LOQ	ug/L	0.5	11/21/2022	RH
531.1	Aldicarb sulfone	< LOQ	ug/L	8.0	11/21/2022	RH
531.1	Aldicarb sulfoxide	< LOQ	ug/L	0.5	11/21/2022	RH
531.1	Carbaryl	< LOQ	ug/L	0.5	11/21/2022	RH
531.1	Carbofuran	< LOQ	ug/L	0.9	11/21/2022	RH
531.1	Methomyl	< LOQ	ug/L	0.5	11/21/2022	RH
531.1	Oxamyl	< LOQ	ug/L	1.0	11/21/2022	RH

Note: Methylcarbamate Pesticides analysis performed by NYSDOH ELAP #11549 using EPA 531.2, Rev.1 (2001). Surrogate 4-Bromo-3,5-dimethylphenyl-N-methylcarbamate recovered at 114%, within the +/-30% recovery limits. Quality Assurance review of the sub-contracted results provided confirms Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr

Comments: Sample cannot be run for Volatile Organics \$524 due to an instrument malfunction. Client was notified. - JLM

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 2

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT 18 - DEL AQU

WEST LAKE DR

VALHALLA, NY

Collection Point: ENTRY POINT

ID of Source: DELAWARE AQUEDUCT

Agency: Westchester County Water Agency

432 Michealian Office Building White Plains, NY 10601

Attn: Amanda Delgado

addt'l Report To:

Received By: AG LG

Bottle No: K0908 09 10 FB1384

Collected By: DELGADO

Collection Date: 10/28/2022 AT 11:46:00AM

Submitted On: 10/28/2022 AT 12:28:00PM

PWS No.: 5903488

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: Residual Cl2:

Sample chilled on arrival?: YES

Sample Type: POT_DW

Comment: SOC/VOC RESAMPLE

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics							
	rganic Compounds						
EPA 524.2	*THM-Bromodichloromethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	*THM-Bromoform	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	*THM-Chloroform	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
DL = Detection	n Limit LOQ = Limit of Quantitation	J=val	ue is an estin	nate		H = exceeds ho	lding time
Approved By	Robert Hilbrandt QA Office	r		Date	Approved	: 12/07/2022	

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 2

These analytical results relate only to the sample identified in this report.

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/04/2022	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/04/2022	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/04/2022	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Trichloroethene	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/04/2022	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	11/04/2022	GZ2
DL = Detection	n Limit LOQ = Limit of Quantitation	J=val	ue is an estim	nate		H = exceeds h	noldina time

Approved By Robert Hilbrandt

QA Officer

Date Approved: 12/07/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 2 of 2

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: CATSKILL SOUTH - CAT AQU

Received By: JLM

VALHALLA, NY

Bottle No: K851 852 853 FB1369 Q4351 4383

N57 526 48 P24 25+ M2244 2234+

Collection Point: E.P.

Collected By: DELGADO

ID of Source: CATAQ

Collection Date: 10/24/2022 AT 11:55:00AM Submitted On: 10/24/2022 AT 12:22:00PM

Agency: Westchester County Water Agency

PWS No.: 5903488

432 Michealian Office Building

Type Descriptor: 022

Source ID: 000

White Plains, NY 10601 Attn: Amanda Delgado

pH: Free Cl2:

Residual CI2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

addt'l Report To:

Comment:SOC/VOC

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics							
	actables - 504.1						
504.1	1,2-Dibromo-3-chloropropane	< LOQ		ug/L	0.01	11/04/2022	
504.1	1,2-Dibromoethane	< LOQ		ug/L	0.01	11/04/2022	
Pesticide	s - <i>EPA 508</i>						
508	Aldrin	< LOQ		ug/L	0.05	10/28/2022	RH
508	Chlordane	< LOQ		ug/L	0.20	10/28/2022	RH
508	Dieldrin	< LOQ		ug/L	0.02	10/28/2022	RH
508	Endrin	< LOQ		ug/L	0.01	10/28/2022	RH
508	Heptachlor	< LOQ		ug/L	0.02	10/28/2022	RH
508	Heptachlor Epoxide	< LOQ		ug/L	0.02	10/28/2022	RH
508	Lindane	< LOQ		ug/L	0.02	10/28/2022	RH
508	Methoxychlor	< LOQ		ug/L	0.10	10/28/2022	RH
508	PCB's - Screen	Not Analyzed		ug/L	0.10	10/28/2022	RH
508	Propachlor	Not Analyzed		ug/L	0.04	10/28/2022	RH
508	Toxaphene	< LOQ		ug/L	1.00	10/28/2022	RH
Surrogate 2 sub-contract	cide analysis performed by NYSDOH ELAP #11 2,4,5,6-Tetrachloro-m-xylene recovered at 117% cted results provided confirms Quality Control a es - EPA 515.1	, within the +/-3	0% acceptar	nce rang	e. Quality A		of the
515.1	2,4,5-TP (Silvex)	< LOQ		ug/L	0.2	11/07/2022	
515.1	2,4-D	< LOQ		ug/L	0.1	11/07/2022	
515.1	Dalapon	< LOQ		ug/L	4	11/07/2022	
DL = Detection	on Limit LOQ = Limit of Quantitation	J=valu	e is an estim	ate		H = exceeds ho	lding time

The results given above are INTERIM values and have not been validated by the QC Officer

Date Approved: 12/30/1899 Approved By

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 4

These analytical results relate only to the sample identified in this report.

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
515.1	Dicamba	< LOQ		ug/L	0.1	11/07/2022	
515.1	Dinoseb	< LOQ		ug/L	0.2	11/07/2022	
515.1	Pentachlorophenol	< LOQ		ug/L	0.04	11/07/2022	
515.1	Picloram .	< LOQ		ug/L	0.1	11/07/2022	
Volatile O	rganic Compounds						
EPA 524.2	*THM-Bromodichloromethane	0.886		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	*THM-Bromoform	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	*THM-Chloroform	4.22		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
DL = Detectio	n Limit LOQ = Limit of Quantitation	J=va	lue is an estin	nate		H = exceeds ho	lding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 4

Method	Test Description	Results	Qualifier U	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	10/26/2022	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	10/26/2022	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	10/26/2022	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Trichloroethene	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	10/26/2022	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	10/26/2022	GZ2
Organic C	Chemicals - EPA 525.2						
525.2	Alachlor	< LOQ		ug/L	0.2	10/28/2022	RH
525.2	Atrazine	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Benzo(a)pyrene	< LOQ		ug/L	0.02	10/28/2022	RH
525.2	bis(2-Ethylhexyl)adipate	< LOQ		ug/L	0.6	10/28/2022	RH
525.2	bis(2-Ethylhexyl)phthalate	< LOQ		ug/L	0.6	10/28/2022	RH
525.2	Butachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Hexachlorobenzene	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Hexachlorocyclopentadiene	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Metolachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Metribuzin	< LOQ		ug/L	0.10	10/28/2022	RH
	Propachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Simazine	< LOQ		ug/L	0.07	10/28/2022	RH
sub-contrac	-Volatile Organic Compounds by GC/MS ar cted results provided confirms Quality Conti te Pesticides - EPA 531.1						
531.1	3-Hydroxy Carbofuran	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Aldicarb	< LOQ		ug/L	0.5	11/21/2022	RH

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

LOQ = Limit of Quantitation

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

DL = Detection Limit

THIS IS A COPY

J=value is an estimate

Page 3 of 4

H = exceeds holding time

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
531.1	Aldicarb sulfone	< LOQ		ug/L	0.8	11/21/2022	RH
531.1	Aldicarb sulfoxide	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbaryl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbofuran	< LOQ		ug/L	0.9	11/21/2022	RH
531.1	Methomyl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Oxamyl	< LOQ		ug/L	1.0	11/21/2022	RH

Note: Methylcarbamate Pesticides analysis performed by NYSDOH ELAP #11549 using EPA 531.2, Rev.1 (2001).

Surrogate 4-Bromo-3,5-dimethylphenyl-N-methylcarbamate recovered at 106%, within the +/-30% recovery limits. Quality Assurance review of the sub-contracted results provided confirms Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By

Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 4 of 4

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: GATE OF HEAVEN P.S.

VALHALLA, NY

Collection Point: RAW SAMPLE TAP

ID of Source: WWD3

Agency: Westchester County Water Agency

432 Michealian Office Building White Plains, NY 10601

Attn: Amanda Delgado

addt'l Report To:

Received By: KB JLM

Bottle No: K840 839+ FB1371 Q1710 4489+

N62 56 43 P250 1927+ M2355

2273+

Collected By: DELGADO

Collection Date: 10/24/2022 AT 10:59:00AM Submitted On: 10/24/2022 AT 11:35:00AM

PWS No.: 5903488

Type Descriptor: 022

Source ID: 000

pH:

Free CI2: Residual CI2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment :SOC/VOC

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
<u>Organics</u>							
Microextr	ractables - 504.1						
504.1	1,2-Dibromo-3-chloropropane	< LOQ		ug/L	0.01	11/04/2022	
504.1	1,2-Dibromoethane	< LOQ		ug/L	0.01	11/04/2022	
Pesticide	s - EPA 508						
508	Aldrin	< LOQ		ug/L	0.05	10/28/2022	RH
508	Chlordane	< LOQ		ug/L	0.20	10/28/2022	RH
508	Dieldrin	< LOQ		ug/L	0.02	10/28/2022	RH
508	Endrin	< LOQ		ug/L	0.01	10/28/2022	RH
508	Heptachlor	< LOQ		ug/L	0.02	10/28/2022	RH
508	Heptachlor Epoxide	< LOQ		ug/L	0.02	10/28/2022	RH
508	Lindane	< LOQ		ug/L	0.02	10/28/2022	RH
508	Methoxychlor	< LOQ		ug/L	0.10	10/28/2022	RH
508	PCB's - Screen	Not Analyzed		ug/L	0.10	10/28/2022	RH
508	Propachlor	Not Analyzed		ug/L	0.04	10/28/2022	RH
508	Toxaphene	< LOQ		ug/L	1.00	10/28/2022	RH
Surrogate 2 sub-contract	cide analysis performed by NYSDOH ELAP #1: 2,4,5,6-Tetrachloro-m-xylene recovered at 116% cted results provided confirms Quality Control at a case - EPA 515.1	6, within the +/-3	0% acceptar	nce rangi			of the
515.1	2,4,5-TP (Silvex)	< LOQ		ug/L	0.2	11/07/2022	
515.1	2,4-D	< LOQ		ug/L	0.1	11/07/2022	
515.1	Dalapon	< LOQ		ug/L	1	11/07/2022	
DL = Detection	on Limit LOQ = Limit of Quantitation	J=valu	e is an estim	ate		H = exceeds ho	Iding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 1 of 4

These analytical results relate only to the sample identified in this report.

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
515.1	Dicamba	< LOQ		ug/L	0.1	11/07/2022	www.commonwerousecommons.com
515.1	Dinoseb	< LOQ		ug/L	0.2	11/07/2022	
515.1	Pentachlorophenol	< LOQ		ug/L	0.04	11/07/2022	
515.1	Picloram	< LOQ		ug/L	0.1	11/07/2022	
Volatile O	rganic Compounds						
EPA 524.2	*THM-Bromodichloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Bromoform	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Chloroform	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
DL = Detection	Limit LOQ = Limit of Quantitation	J=va	lue is an estim	nate		H = exceeds ho	lding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 4

Method	Test Description	Results	Qualifier U	nits	DL/LOQ	Analyzed on	Validator
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Ethylbenzene	< LOQ	l	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ	ŀ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Isopropylbenzene	< LOQ	1	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ	ı	ug/L	2.00	10/24/2022	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ	Į.	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Methylene Chloride	< LOQ	ı	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ	t	ug/L	2.00	10/24/2022	GZ2
EPA 524.2	Naphthalene	< LOQ	ŧ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	N-Butylbenzene	< LOQ	ŧ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	10/24/2022	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ	9	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Styrene	< LOQ	Į.	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Tetrachloroethene	< LOQ	Ę	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Toluene	< LOQ	Į.	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ	Į.	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ	Į	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Trichloroethene	< LOQ	Į	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Vinyl chloride	< LOQ	we	ug/L	0.50	10/24/2022	GZ2
Surrogate 4-	bromofluorobenzene recovered above t	he QC criteria.					
jd/GZ 10/25/2							
	hemicals - EPA 525.2	-1.00		(1	0.0	40/00/0000	DII
525.2	Alachlor	< LOQ		ug/L	0.2	10/28/2022	RH
525.2	Atrazine	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Benzo(a)pyrene	< LOQ		ug/L	0.02	10/28/2022	RH
525.2	bis(2-Ethylhexyl)adipate	< LOQ		ug/L	0.6	10/28/2022	RH
525.2	bis(2-Ethylhexyl)phthalate	< LOQ		ug/L	0.6	10/28/2022	RH
525.2	Butachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Hexachlorobenzene	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Hexachlorocyclopentadiene	< LOQ		ug/L	0.1	10/28/2022	RH
525.2	Metolachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Metribuzin	< LOQ		ug/L	0.10	10/28/2022	RH
505.0	Propachlor	< LOQ		ug/L	0.10	10/28/2022	RH
525.2	Simazine	< LOQ		ug/L	0.07	10/28/2022	RH
	/olatile Organic Compounds by GC/MS a ed results provided confirms Quality Con						
DL = Detection	Limit LOQ = Limit of Quantitati	ion J=val	ue is an estimate	:		H = exceeds h	olding time

The results given above are INTERIM values and have not been validated by the QC Officer

Date Approved: 12/30/1899 Approved By

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 3 of 4

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Carbamat	te Pesticides - EPA 531.1						
531.1	3-Hydroxy Carbofuran	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Aldicarb	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Aldicarb sulfone	< LOQ		ug/L	0.8	11/21/2022	RH
531.1	Aldicarb sulfoxide	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbaryl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbofuran	< LOQ		ug/L	0.9	11/21/2022	RH
531.1	Methomyl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Oxamyl	< LOQ		ug/L	1.0	11/21/2022	RH

Note: Methylcarbamate Pesticides analysis performed by NYSDOH ELAP #11549 using EPA 531.2, Rev.1 (2001). Surrogate 4-Bromo-3,5-dimethylphenyl-N-methylcarbamate recovered at 110%, within the +/-30% recovery limits. Quality Assurance review of the sub-contracted results provided confirms Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 4 of 4

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

4317+ N47 46 42 P22 1871+

Source ID: 000

Bottle No: K845 846 847 FB1370 Q3888

M2290 2278+

Collection Date: 10/24/2022 AT 10:09:00AM

Submitted On: 10/24/2022 AT 11:30:00AM

Sample Location: KENSICO DAM

VALHALLA, NY 10595

Collection Point: ENTRY POINT

ID of Source: KENSICO RES

addt'l Report To:

Agency: Westchester County Water Agency

432 Michealian Office Building

Attn: Amanda Delgado

Type Descriptor: 022 White Plains, NY 10601

pH:

Received By: KB JLM

Collected By: DELGADO

PWS No.: 5903488

Free CI2: Residual Cl2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment:SOC/VOC

Method	Test Descrip	tion	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics								
	actables - 504	.1						
504.1	1,2-Dibrom	o-3-chloropropane	< LOQ		ug/L	0.01	11/04/2022	
504.1	1,2-Dibrom	oethane	< LOQ		ug/L	0.01	11/04/2022	
Pesticide	s - <i>EPA 508</i>							
508	Aldrin		< LOQ		ug/L	0.05	10/28/2022	RH
508	Chlordane		< LOQ		ug/L	0.20	10/28/2022	RH
508	Dieldrin		< LOQ		ug/L	0.02	10/28/2022	RH
508	Endrin		< LOQ		ug/L	0.01	10/28/2022	RH
508	Heptachlor		< LOQ		ug/L	0.02	10/28/2022	RH
508	Heptachlor	Epoxide	< LOQ		ug/L	0.02	10/28/2022	RH
508	Lindane		< LOQ		ug/L	0.02	10/28/2022	RH
508	Methoxychl	or	< LOQ		ug/L	0.10	10/28/2022	RH
508	PCB's - Scr	reen	Not Analyzed		ug/L	0.10	10/28/2022	RH
508	Propachlor		Not Analyzed		ug/L	0.02	10/28/2022	RH
508	Toxaphene		< LOQ		ug/L	1.00	10/28/2022	RH
Surrogate 2 sub-contract	2,4,5,6-Tetrachlo	rformed by NYSDOH ELAP #11 ro-m-xylene recovered at 110% ided confirms Quality Control a	, within the +/-3	30% accepta	nce rang	e. Quality A thod require	ements. RWHJr	
515.1	2,4,5-TP (S	iilvex)	< LOQ		ug/L	0.2	11/07/2022	
515.1	2,4-D		< LOQ		ug/L	0.1	11/07/2022	
515.1	Dalapon		< LOQ		ug/L	Aprelia	11/07/2022	
DL = Detection	on Limit	LOQ = Limit of Quantitation	J=valu	ue is an estin	nate		H = exceeds ho	lding time

The results given above are INTERIM values and have not been validated by the QC Officer

Date Approved: 12/30/1899 Approved By

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 4

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
515.1	Dicamba	< LOQ		ug/L	0.1	11/07/2022	
515.1	Dinoseb	< LOQ		ug/L	0.2	11/07/2022	
515.1	Pentachlorophenol	< LOQ		ug/L	0.04	11/07/2022	
515.1	Picloram	< LOQ		ug/L	0.1	11/07/2022	
Volatile O	rganic Compounds						
EPA 524.2	*THM-Bromodichloromethane	0.544		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Bromoform	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Chloroform	2.26		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
DL = Detection	on Limit LOQ = Limit of Quantitation	J=va	lue is an estin	nate		H = exceeds ho	lding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 4

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	Dichlorodifluoromethane	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Ethylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Isopropylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ	ug/L	2.00	10/24/2022	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Methylene Chloride	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ	ug/L	2.00	10/24/2022	GZ2
EPA 524.2	Naphthalene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	N-Butylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	n-Propylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	o-Xylene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	p & m-Xylene	< LOQ	ug/L	1.00	10/24/2022	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Styrene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Tetrachloroethene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Toluene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Trichloroethene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Vinyl chloride	< LOQ	ug/L	0.50	10/24/2022	GZ2
Organic C	Chemicals - EPA 525.2					
525.2	Alachlor	< LOQ	ug/L	0.2	10/28/2022	RH
525.2	Atrazine	< LOQ	ug/L	0.1	10/28/2022	RH
525.2	Benzo(a)pyrene	< LOQ	ug/L	0.02	10/28/2022	RH
525.2	bis(2-Ethylhexyl)adipate	< LOQ	ug/L	0.6	10/28/2022	RH
525.2	bis(2-Ethylhexyl)phthalate	< LOQ	ug/L	0.6	10/28/2022	RH
525.2	Butachlor	< LOQ	ug/L	0.10	10/28/2022	RH
525.2	Hexachlorobenzene	< LOQ	ug/L	0.1	10/28/2022	RH
525.2	Hexachlorocyclopentadiene	< LOQ	ug/L	0.1	10/28/2022	RH
525.2	Metolachlor	< LOQ	ug/L	0.10	10/28/2022	RH
525.2	Metribuzin	< LOQ	ug/L	0.10	10/28/2022	RH
	Propachlor	< LOQ	ug/L	0.10	10/28/2022	RH
525.2	Simazine	< LOQ	ug/L	0.07	10/28/2022	RH
sub-contrac	Volatile Organic Compounds by GC/MS an cted results provided confirms Quality Contr te Pesticides - EPA 531.1					
531.1	3-Hydroxy Carbofuran	< LOQ	ug/L	0.5	11/21/2022	RH
531.1	Aldicarb	< LOQ	ug/L	0.5	11/21/2022	RH
DL = Detectio	= Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds					olding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 3 of 4

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
531.1	Aldicarb sulfone	< LOQ		ug/L	0.8	11/21/2022	RH
531.1	Aldicarb sulfoxide	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbaryl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbofuran	< LOQ		ug/L	0.9	11/21/2022	RH
531.1	Methomyl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Oxamyl	< LOQ		ug/L	1.0	11/21/2022	RH

Note: Methylcarbamate Pesticides analysis performed by NYSDOH ELAP #11549 using EPA 531.2, Rev.1 (2001).

Surrogate 4-Bromo-3,5-dimethylphenyl-N-methylcarbamate recovered at 100%, within the +/-30% recovery limits. Quality Assurance review of the sub-contracted results provided confirms Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 4 of 4

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: CROTON LAKE GATE HOUSE

YORKTOWN HEIGHTS, NY

Collection Point: ENTRY POINT

ID of Source: CROTON AQ

Agency: Westchester County Water Agency

432 Michealian Office Building White Plains, NY 10601

Attn: Amanda Delgado

addt'l Report To:

Received By: KB JLM

Bottle No: K842 843 844 FB1388 Q4322

4359+ N241 527 508 P021 1418+

M2250 2288+

Collected By: DELGADO

Collection Date : 10/24/2022 AT 8:42:00AM **Submitted On :** 10/24/2022 AT 11:31:00AM

PWS No.: 5903488

Type Descriptor: 022

ptor: 022 **Source ID**: 000

pH:

Free CI2 : Residual CI2 :

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment:SOC/VOC

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator		
Organics									
	ctables - 504.1								
504.1	1,2-Dibromo-3-chloropropane	< LOQ		ug/L	0.01	11/04/2022			
504.1	1,2-Dibromoethane	< LOQ		ug/L	0.01	11/04/2022			
Pesticides	- EPA 508								
508	Aldrin	< LOQ		ug/L	0.05	10/28/2022	RH		
508	Chlordane	< LOQ		ug/L	0.20	10/28/2022	RH		
508	Dieldrin	< LOQ		ug/L	0.02	10/28/2022	RH		
508	Endrin	< LOQ		ug/L	0.01	10/28/2022	RH		
508	Heptachlor	< LOQ		ug/L	0.02	10/28/2022	RH		
508	Heptachlor Epoxide	< LOQ		ug/L	0.02	10/28/2022	RH		
508	Lindane	< LOQ		ug/L	0.02	10/28/2022	RH		
508	Methoxychlor	< LOQ		ug/L	0.10	10/28/2022	RH		
508	PCB's - Screen	Not Analyzed		ug/L	0.10	10/28/2022	RH		
508	Propachlor	Not Analyzed		ug/L	0.04	10/28/2022	RH		
508	Toxaphene	< LOQ		ug/L	1.00	10/28/2022	RH		
Surrogate 2, sub-contract	Note: Pesticide analysis performed by NYSDOH ELAP #11549 using EPA 505, Rev 2.1 (1995). Surrogate 2,4,5,6-Tetrachloro-m-xylene recovered at 114%, within the +/-30% acceptance range. Quality Assurance review of the sub-contracted results provided confirms Quality Control acceptance criteria have satisfied method requirements. RWHJr Herbicides - EPA 515.1								
515.1	2,4,5-TP (Silvex)	< LOQ		ug/L	0.2	11/07/2022			
515.1	2,4-D	< LOQ		ug/L	0.1	11/07/2022			
515.1	Dalapon	< LOQ		ug/L	1	11/07/2022			
DL = Detection	Limit LOQ = Limit of Quantitation	J=valu	ie is an estim	ate		H = exceeds hol	ding time		

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 4

These analytical results relate only to the sample identified in this report.

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
515.1	Dicamba	< LOQ		ug/L	0.1	11/07/2022	
515.1	Dinoseb	< LOQ		ug/L	0.2	11/07/2022	
515.1	Pentachlorophenol	< LOQ		ug/L	0.04	11/07/2022	
515.1	Picloram	< LOQ		ug/L	0.1	11/07/2022	
Volatile O	rganic Compounds						
EPA 524.2	*THM-Bromodichloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Bromoform	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Chloroform	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	10/24/2022	GZ2
DL = Detectio	n Limit LOQ = Limit of Quantitation	J=va	ue is an estin	nate		H = exceeds ho	lding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	Dichlorodifluoromethane	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Ethylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Isopropylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ	ug/L	2.00	10/24/2022	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Methylene Chloride	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ	ug/L	2.00	10/24/2022	GZ2
EPA 524.2	Naphthalene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	N-Butylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	n-Propylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	o-Xylene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	p & m-Xylene	< LOQ	ug/L	1.00	10/24/2022	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Styrene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Tetrachloroethene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Toluene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Trichloroethene	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ	ug/L	0.50	10/24/2022	GZ2
EPA 524.2	Vinyl chloride	< LOQ	ug/L	0.50	10/24/2022	GZ2
Organic C	hemicals - EPA 525.2					
525.2	Alachlor	< LOQ	ug/L	0.2	10/28/2022	RH
525.2	Atrazine	< LOQ	ug/L	0.1	10/28/2022	RH
525.2	Benzo(a)pyrene	< LOQ	ug/L	0.02	10/28/2022	RH
525.2	bis(2-Ethylhexyl)adipate	< LOQ	ug/L	0.6	10/28/2022	RH
525.2	bis(2-Ethylhexyl)phthalate	< LOQ	ug/L	0.6	10/28/2022	RH
525.2	Butachlor	< LOQ	ug/L	0.10	10/28/2022	RH
525.2	Hexachlorobenzene	< LOQ	ug/L	0.1	10/28/2022	RH
525.2	Hexachlorocyclopentadiene	< LOQ	ug/L	0.1	10/28/2022	RH
525.2	Metolachlor	< LOQ	ug/L	0.10	10/28/2022	RH
525.2	Metribuzin	< LOQ	ug/L	0.10	10/28/2022	RH
	Propachlor	< LOQ	ug/L	0.10	10/28/2022	RH
525.2	Simazine	< LOQ	ug/L	0.07	10/28/2022	RH
sub-contrac	Volatile Organic Compounds by GC/MS an ted results provided confirms Quality Contr re Pesticides - EPA 531.1					
531.1	3-Hydroxy Carbofuran	< LOQ	ug/L	0.5	11/21/2022	RH
531.1	Aldicarb	< LOQ	ug/L	0.5	11/21/2022	RH
DL = Detectio	n Limit LOQ = Limit of Quantitatio	n J=valu	e is an estimate		H = exceeds h	olding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 3 of 4

Method	Test Description	Results	Qualifier U	Units	DL/LOQ	Analyzed on	Validator
531.1	Aldicarb sulfone	< LOQ		ug/L	0.8	11/21/2022	RH
531.1	Aldicarb sulfoxide	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbaryl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Carbofuran	<loq< td=""><td></td><td>ug/L</td><td>0.9</td><td>11/21/2022</td><td>RH</td></loq<>		ug/L	0.9	11/21/2022	RH
531.1	Methomyl	< LOQ		ug/L	0.5	11/21/2022	RH
531.1	Oxamyl	< LOQ		ug/L	1.0	11/21/2022	RH

Note: Methylcarbamate Pesticides analysis performed by NYSDOH ELAP #11549 using EPA 531.2, Rev.1 (2001).

Surrogate 4-Bromo-3,5-dimethylphenyl-N-methylcarbamate recovered at 109%, within the +/-30% recovery limits. Quality Assurance review of the sub-contracted results provided confirms Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

The results given above are INTERIM values and have not been validated by the QC Officer

Approved By Date Approved: 12/30/1899

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 4 of 4

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: CATSKILL SOUTH

Received By: AG JLM

Bottle No: W0031 W0093

VALHALLA, NY

Collection Point: EP

addt'l Report To:

Collected By: DELGADO

ID of Source: CAT AQ.

Collection Date: 12/15/2022 AT 10:55:00AM Submitted On: 12/15/2022 AT 11:09:00AM

Agency: Westchester County Water Agency 432 Michealian Office Building

PWS No.: 5903488

White Plains, NY 10601

Type Descriptor: 022 Source ID: 000

Attn: Amanda Delgado

pH:

Free CI2 :

Residual CI2 :

Sample chilled on arrival ?: YES

Sample Type: POT_SRC

Comment: 1,4 DIOXANE

Method Test Description Results Qualifier Units DL/LOQ Analyzed on Validator

Organics

1,4-Dioxane by SPE,GC/MS,SIM

EPA522, R1.0 1,4-Dioxane < LOQ ug/L 0.100 01/06/2023 RH

Note: EPA Method 522, R1 analysis performed by NYSDOH ELAP #11549. Surrogate 1,4-Dioxane-d8 recovery was 82.2%, within +/-30% method criteria. Quality Assurance review of the sub-contracted result confirms all Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr 1/27/23

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved :

01/27/2023

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Source ID: 000

Residual CI2:

Sample Location: KENSICO DAM Received By: AG JLM **Bottle No:** W0040 W0067

VALHALLA, NY

ENTRY POINT Collection Point: Collected By: DELGADO

ID of Source: WWD1 Collection Date: 12/15/2022 AT 10:13:00AM

Submitted On: 12/15/2022 AT 11:09:00AM Agency: Westchester County Water Agency

PWS No.: 5903488 432 Michealian Office Building Type Descriptor: 022

White Plains, NY 10601 pH: Attn: Amanda Delgado

Free CI2: Sample chilled on arrival ?: YES

Sample Type: POT_SRC addt'l Report To:

Comment: 1,4 DIOXANE

Method Results Validator **Test Description Qualifier** Units DL/LOQ Analyzed on

Organics

1,4-Dioxane by SPE,GC/MS,SIM

EPA522, R1.0 1,4-Dioxane < LOQ ug/L 0.100 01/06/2023 RH

Note: EPA Method 522, R1 analysis performed by NYSDOH ELAP #11549. Surrogate 1,4-Dioxane-d8 recovery was 72.7%, within +/-30% method criteria. Quality Assurance review of the sub-contracted result confirms all Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr 1/27/23

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt QA Officer

Date Approved:

01/27/2023

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT 18

WEST LAKE DR

VALHALLA, NY

Collection Point: ENTRY POINT

ID of Source: DEL AQ.

Agency: Westchester County Water Agency

432 Michealian Office Building White Plains, NY 10601

Attn: Amanda Delgado

Attn: Amanda Delgado

Collected By: DELGADO

Bottle No: W0070 W0049

Received By: AG JLM

Collection Date: 12/15/2022 AT 9:39:00AM Submitted On: 12/15/2022 AT 11:09:00AM

PWS No.: 5903488

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2 : Residual Cl2 :

Sample chilled on arrival ?: YES

Sample Type: POT_SRC

Comment: 1,4 DIOXANE

Method Test Description Results Qualifier Units DL/LOQ Analyzed on Validator

Organics

1,4-Dioxane by SPE,GC/MS,SIM

addt'l Report To:

EPA522, R1.0 1,4-Dioxane < LOQ ug/L 0.100 01/06/2023 RH

Note: EPA Method 522, R1 analysis performed by NYSDOH ELAP #11549. Surrogate 1,4-Dioxane-d8 recovery was 70.1%, within +/-30% method criteria. Quality Assurance review of the sub-contracted result confirms all Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr 1/27/23

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved :

01/27/2023

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Source ID: 000

Sample Location: CROTON LAKE GATE HOUSE

Received By: AG JLM
Bottle No: W0096 W0078

YORKTOWN HEIGHTS, NY

Attn: Amanda Delgado

Collection Point: ENTRY POINT

Collected By: DELGADO

ID of Source: CROTON AQ.

Collection Date: 12/15/2022 AT 9:07:00AM

Agency: Westchester County Water Agency

Submitted On: 12/15/2022 AT 11:09:00AM

432 Michealian Office Building PWS No.: 5903488

White Plains, NY 10601

Type Descriptor: 022

PH:

Free CI2: Residual CI2:

Sample chilled on arrival?: YES

addt'l Report To: Sample Type: POT_SRC

Comment :1,4 DIOXANE

Method Test Description Results Qualifier Units DL/LOQ Analyzed on Validator

Organics

1,4-Dioxane by SPE,GC/MS,SIM

EPA522, R1.0 1,4-Dioxane < LOQ ug/L 0.100 01/06/2023 RH

Note: EPA Method 522, R1 analysis performed by NYSDOH ELAP #11549. Surrogate 1,4-Dioxane-d8 recovery was 79.7%, within +/-30% method criteria. Quality Assurance review of the sub-contracted result confirms all Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr 1/27/23

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved :

01/27/2023

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: GATES OF HEAVEN P.S.

Received By: AG JLM
Bottle No: W0072 W0050

VALHALLA, NY

Collection Point: EF

addt'l Report To:

Collected By: DELGADO

ID of Source: WWD3

Collection Date: 12/15/2022 AT 8:23:00AM Submitted On: 12/15/2022 AT 11:09:00AM

Agency: Westchester County Water Agency

PWS No.: 5903482

432 Michealian Office Building White Plains, NY 10601

Type Descriptor: 022 Source ID: 000

Attn: Amanda Delgado

pH:

Free Cl2: Residual Cl2:

Attii. Ailianda Deigado

Sample chilled on arrival ?: YES

Sample Type: POT_SRC

Comment: 1,4 DIOXANE

Method Test Description Results Qualifier Units DL/LOQ Analyzed on Validator

Organics

1,4-Dioxane by SPE,GC/MS,SIM

EPA522, R1.0 1,4-Dioxane < LOQ ug/L 0.100 01/06/2023 RH

Note: EPA Method 522, R1 analysis performed by NYSDOH ELAP #11549. Surrogate 1,4-Dioxane-d8 recovery was 90.9%, within +/-30% method criteria. Quality Assurance review of the sub-contracted result confirms all Quality Control acceptance criteria have satisfied method and TNI requirements. RWHJr 1/27/23

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved :

01/27/2023

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: CATSKILL SOUTH -CAT AQU

Bottle No: 527770 527773 527631 527774

FB527234 W99 W43

Source ID: 000

VALHALLA, NY

Collection Point: E.P. Collected By: DELGADO

ID of Source : CAT AQ Collection Date : 10/24/2022 AT 11:53:00AM

Agency: Westchester County Water Agency

Submitted On: 10/24/2022 AT 12:22:00PM

432 Michealian Office Building PWS No. :

White Plains, NY 10601
Attn: Amanda Delgado

Type Descriptor: 022

pH:

1 100 OIL .

Received By: JLM

Free Cl2: Residual Cl2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment: PFOA, PFAS 1,4 DIOXANE

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA537.1, R1.0	PE, LC/MS/MS Perfluorooctanesulfonic Acid (PFOS)	< LOQ		ng/L	1.9	11/04/2022	RH
EPA537.1, R1.0 EPA537.1, R1.0	Perfluorooctanoic Acid (PFOA) Polyfluorinated Alkyl Substances (PFAS)	< LOQ See Note		ng/L ng/L	1.9 1.9	11/04/2022 11/04/2022	RH RH

DL = Detection Limit

addt'l Report To:

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved: 12/14/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 1 of 3

Method Test Descrip	tion	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
	alysis performed by NYSDOF criteria have satisfied method				view of the	sub-contracted r	esult confirms all
Additional PFAS Compound	ds Identified:						
Analyte	Acronym	Chemical Abstr		Result			
Llovofluoronronylana avida	dimer acid /GenX HFPO-DA	Registry Number 13252-13-6b	r (CASRN) <1.	(ng/L) .9 1.1	(ng/L)		
N-ethyl perfluorooctanesulfo		SAA 2991-50-6		<1.9	1.9		
	Ifonamidoacetic acid NMeF0	SAA 2355-31-9)	<1.9	1.9		
Perfluorobutanesulfonic aci		375-7	3-5	<1			
Perfluorodecanoic acid Perfluorododecanoic acid	PFDA PFDoA	335-76-2 307-55-1		<1.9 <1.9	1.9 1.9		
Perfluoroheptanoic acid	PFHpA	375-85-9		<1.9	1.9		
Perfluorohexanesulfonic aci	id PFHxS	355-4	6-4	<1			
Perfluorohexanoic acid	PFHxA	307-24-4		<1.9	1.9		
Perfluorononanoic acid	PFNA	375-95-1	ps. ~9	<1.9	1.9		
Perfluorotetradecanoic acid Perfluorotridecanoic acid	PFTeD/ PFTrDA	4 376-0 72629-94-		<1.9	.9 1.9 1.9		
Perfluoroundecanoic acid	PFUnA	2058-94-8		<1.9	1.9		
11-chloroeicosafluoro-3-oxa	undecane-1-sulfonic acid 110		63051-92-9c	<1.9	1.9		
9-chlorohexadecafluoro-3-o			756426-58-1d	<1.9	1.9		
4,8-dioxa-3H-perfluoronona		¥ 91900)5-14-4e	<1	.9 1.9		
PFAS by SPE, LC/MS/M	tanesulfonic Acid (PFOS)	< LOQ		ng/L	2.00	11/07/2022	RH
	tanoic Acid (PFOA)	< LOQ		ng/L	2.00	11/07/2022	RH
	ited Alkyl Substances (PFAS)			ng/L	2.00	11/07/2022	RH
•	alysis performed by NYSDO		Ouglity Accus	-			
	criteria have satisfied method				NEW OLUTE	sub-contracted in	sout Comming an
·							
Additional PFAS Compound Analyte	Is Identified: Acronym	Chemical Abstr	act Services	Result	LOQ		
Allalyte		Registry Numbe		(ng/L)	(ng/L)		
Hexafluoropropylene oxide	dimer acid /GenX HFPO-DA	13252-13-6b	<2.) (1.3)		
N-ethyl perfluorooctanesulfo		SAA 2991-50-6		<2.0	2.0		
	Ifonamidoacetic acid NMeFC			<2.0	2.0		
Perfluorobutanesulfonic acid Perfluorodecanoic acid	d PFBS PFDA	375-7 335-76-2	3-0	<2.0	0 2.0		
Perfluorododecanoic acid	PFDoA	307-55-1		<2.0	2.0		
Perfluoroheptanoic acid	PFHpA	375-85-9		<2.0	2.0		
Perfluorohexanesulfonic aci		355-4	6-4	<2.			
Perfluorohexanoic acid Perfluorononanoic acid	PFHxA PFNA	307-24-4 375-95-1		<2.0 <2.0	2.0 2.0		
Perfluorotetradecanoic acid			6-7	<2.			
Perfluorotridecanoic acid	PFTrDA	72629-94-		<2.0	2.0		
Perfluoroundecanoic acid	PFUnA	2058-94-8		<2.0	2.0		
	undecane-1-sulfonic acid 110		63051-92-9c		2.0		
9-chlorohexadecafluoro-3-o 4,8-dioxa-3H-perfluoronona			56426-58-1d)5-14-4e	<2.0 <2	2.0		
•						A ACAIT CARE	CUENT
Comments: SAMPLE CO WAS NOTIFIED JLM	ULD NOT BE RUN FOR 1,4	DIOXANE AS RE	QUESTED D	UE IOA	IN INSTRU	WEN I FAILURE	. ULIEN I
	LOQ = Limit of Quantitation	J=valu	ie is an estima	ate		H = exceeds he	olding time
Approved By Robert Hilbrai				***************************************	Annroyed	: 12/14/2022	
TAPIOTOL DY MODELLIIMIA				V010	hhinaen	a 1 last 3 "I las U las las	

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Bottle No: 527575 527772 527775 527577

W54 W76 FB527573

Sample Location: SHAFT 18 - DEL AQU

WEST LAKE DR

VALHALLA, NY

Collection Point: ENTRY POINT

ID of Source: DELAQ

addt'l Report To:

Agency: Westchester County Water Agency

432 Michealian Office Building

White Plains, NY 10601

Attn: Amanda Delgado

Collected By: DELGADO

Received By: KB JLM

Collection Date: 10/24/2022 AT 9:38:00AM Submitted On: 10/24/2022 AT 11:37:00AM

PWS No.: 5903488

Type Descriptor: 022

Source ID: 000

pH:

Free Cl2: Residual Cl2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment: PFOA, PFOS 1,4 DIOXANE

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics PFAS by SP EPA537.1, R1.0	E, LC/MS/MS Perfluorooctanesulfonic Acid (PFOS)	< LOQ		ng/L	1.9	11/04/2022	RH
EPA537.1, R1.0 EPA537.1, R1.0	Perfluorooctanesunonic Acid (PFOS) Perfluorooctanoic Acid (PFOA) Polyfluorinated Alkyl Substances (PFAS)	< LOQ See Note		ng/L ng/L	1.9 1.9	11/04/2022 11/04/2022	RH RH

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved: 12/14/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 3

Method	Test Description		Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
	lethod 537.1 analysis performerol acceptance criteria have sa					view of the	sub-contracted r	esult confirms all
Additional P	FAS Compounds Identified:							
Analyte		,	Chemical Abst		Resul			
Llovefluoron	ropylene oxide dimer acid /Ge		egistry Numbe 13252-13-6b	er (CASRN) <1.	(ng/L) 9 1.	(ng/L)		
	uorooctanesulfonamidoacetic				<1.9	1.9		
	rfluorooctanesulfonamidoacet				<1.9	1.9		
	anesulfonic acid	PFBS	375-7	'3-5	<1			
Perfluorodeo		PFDA	335-76-2		<1.9	1.9		
Perfluorodoc Perfluoroher	decanoic acid	PFDoA PFHpA	307-55-1 375-85-9		<1.9 <1.9	1.9 1.9		
	canesulfonic acid	PFHxS	355-4	16-4	<1.5			
Perfluorohex		PFHxA	307-24-4		<1.9	1.9		
Perfluoronor		PFNA	375-95-1		<1.9	1.9		
	adecanoic acid	PFTeDA	376-0		<1			
Perfluorotrid Perfluoround		PFTrDA PFUnA	72629-94- 2058-94-8		<1.9 <1.9	1.9 1.9		
	osafluoro-3-oxaundecane-1-su			, 763051-92-9c		1.9		
	adecafluoro-3-oxanone-1-sulfo	nic acid 9CFF		756426-58-1d	<1.9	1.9		
	l-perfluorononanoic acid	ADONA	9190	05-14-4e	<1	1.9		
PFAS by S	PE, LC/MS/MS for Field B		11.00			0.0	44 107 10000	D11
	Perfluorooctanesulfonic Ad	, ,	< LOQ		ng/L	2.3	11/07/2022	RH
	Perfluorooctanoic Acid (PF	*	< LOQ		ng/L	2.3	11/07/2022	RH
	Polyfluorinated Alkyl Subs		See Note		ng/L	2.3	11/07/2022	RH
	ethod 537.1 analysis performer rol acceptance criteria have sa					view of the s	sub-contracted r	esult confirms all
Additional PI	FAS Compounds Identified:							
Analyte	•		Chemical Abst		Result			
			egistry Numbe		(ng/L)	(ng/L)		
	ropylene oxide dimer acid /Ge uorooctanesulfonamidoacetic		13252-13-6b \A 2991-50-6	<2.	3 2.3 <2.3	3 2.3		
	fluorooctanesulfonamidoaceti				<2.3	2.3		
	anesulfonic acid	PFBS	375-7		<2	.3 2.3		
Perfluorodec		PFDA	335-76-2		<2.3	2.3		
Perfluorodod		PFDoA	307-55-1 375-85-9		<2.3	2.3 2.3		
Perfluorohep Perfluorohex	ranoic acid	PFHpA PFHxS	375-85-9 355-4	6-4	<2.3 <2			
Perfluorohex	The second secon	PFHxA	307-24-4	we t	<2.3	2.3		
Perfluoronon		PFNA	375-95-1		<2.3	2.3		
	adecanoic acid	PFTeDA	376-0		<2			
Perfluorotride Perfluoround		PFTrDA PFUnA	72629-94- 2058-94-8		<2.3 <2.3	2.3 2.3		
	osafluoro-3-oxaundecane-1-su			, 763051-92-9c		2.3		
9-chlorohexa	idecafluoro-3-oxanone-1-sulfo			756426-58-1d	<2.3	2.3		
4,8-dioxa-3H	-perfluorononanoic acid	ADONA	9190)5-14-4e	<2	2.3		
	s: SAMPLE COULD NOT BE F	RUN FOR 1,4 DIG	OXANE AS RE	EQUESTED D	UE TO	N INSTRU	MENT FAILURE	CLIENT
DL = Detection	Limit LOQ = Limit of	Quantitation	J=valu	ue is an estima	ate		H = exceeds h	olding time
Approved By	Robert Hilbrandt	QA Office	r		Date	Approved	: 12/14/2022	
Environmente	1.5 - 1							

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: GATE OF HEAVEN P.S.

VALHALLA, NY

Received By: KB JLM

Bottle No: 527580 527576 527769 527771

FB527216 W27 W74

Collection Point: EP

addt'l Report To:

ID of Source: WWD3

Agency: Westchester County Water Agency

432 Michealian Office Building

White Plains, NY 10601

Attn: Amanda Delgado

Collected By: DELGADO

Collection Date: 10/24/2022 AT 11:06:00AM Submitted On: 10/24/2022 AT 11:35:00AM

PWS No.: 5903488

Type Descriptor: 022

Source ID: 000

pH:

Free Cl2: Residual CI2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment: PFOA, PFOS 1,4 DIOXANE

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics PFAS by SP EPA537.1, R1.0	PE, LC/MS/MS Perfluorooctanesulfonic Acid (PFOS)	< LOQ		ng/L	1.9	11/04/2022	RH
EPA537.1, R1.0 EPA537.1, R1.0	Perfluorooctanoic Acid (PFOA) Polyfluorinated Alkyl Substances (PFAS)	< LOQ See Note		ng/L ng/L	1.9 1.9	11/04/2022 11/04/2022	RH RH

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved: 12/14/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 3

Method	Test Description		Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
	ethod 537.1 analysis per ol acceptance criteria h					view of the s	sub-contracted r	esult confirms all
Additional PF	FAS Compounds Identifi	ed:						
Analyte		Acronym Ch	nemical Abstı		Resul			
			gistry Numbe		(ng/L)	(ng/L)		
	opylene oxide dimer aci iorooctanesulfonamidoa		3252-13-6b A 2991-50-6	<1.	9 1. <1.9	9 1.9		
	fluorooctanesulfonamid				<1.9	1.9		
, ,	anesulfonic acid	PFBS	375-7		<1			
Perfluorodec		PFDA	335-76-2		<1.9	1.9		
Perfluorodod		PFDoA	307-55-1		<1.9	1.9		
Perfluorohep	tanoic acid anesulfonic acid	PFHpA PFHxS	375-85-9 355-4	6.4	<1.9 <1	1.9 .9 1.9		
Perfluorohex		PFHxA	307-24-4	0-4	<1.9	1.9		
Perfluoronon		PFNA	375-95-1		<1.9	1.9		
	adecanoic acid	PFTeDA	376-0		<1			
Perfluorotride		PFTrDA	72629-94-		<1.9	1.9		
Perfluoround	ecanoic acid safluoro-3-oxaundecane	PFUnA	2058-94-8	'63051-92-9c	<1.9 <1.9	1.9 1.9		
	decafluoro-3-oxannuecane decafluoro-3-oxanone-1			756426-58-1d	<1.9	1.9		
	perfluorononanoic acid	ADONA)5-14-4e		1.9		
	PE, LC/MS/MS for Fie							
	Perfluorooctanesulfo	,	< LOQ		ng/L	2.00	11/07/2022	RH
	Perfluorooctanoic Ac	id (PFOA)	< LOQ		ng/L	2.00	11/07/2022	RH
	Polyfluorinated Alkyl	Substances (PFAS)	See Note		ng/L	2.00	11/07/2022	RH
	ethod 537.1 analysis per ol acceptance criteria ha					view of the s	sub-contracted re	esult confirms all
Additional PF	AS Compounds Identific	ed:						
Analyte	,	Acronym Ch	nemical Abstr		Result			
			gistry Numbe		(ng/L)	(ng/L)		
	opylene oxide dimer aci iorooctanesulfonamidoa		3252-13-6b	<2.	0 2.i <2.0	2.0		
	fluorooctanesulfonamide		A 2991-50-6 A 2355-31-9		<2.0	2.0		
	anesulfonic acid	PFBS	375-7		<2			
Perfluorodeca	anoic acid	PFDA	335-76-2		<2.0	2.0		
Perfluorodod		PFDoA	307-55-1		<2.0	2.0		
Perfluorohep	tanoic acid anesulfonic acid	PFHpA PFHxS	375-85-9 355-4	G A	<2.0 <2	2.0 .0 2.0		
Perfluorohexa		PFHxA	307-24-4	0-4	<2.0	2.0		
Perfluoronon		PFNA	375-95-1		<2.0	2.0		
Perfluorotetra	adecanoic acid	PFTeDA	376-0		<2			
Perfluorotride		PFTrDA	72629-94-		<2.0	2.0		
Perfluoround		PFUnA	2058-94-8		<2.0	2.0 2.0		
	safluoro-3-oxaundecane decafluoro-3-oxanone-1			56426-58-1d		2.0		
	-perfluorononanoic acid)5-14-4e		2.0 2.0		
Comments	:: SAMPLE COULD NOT						MENT FAILURE	. CLIENT
DL = Detection		imit of Quantitation	J=valu	ie is an estim	ate		H = exceeds he	olding time
Approved By	Robert Hilbrandt	QA Officer			Date	Approved :	12/14/2022	
							delumbia	

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: KENSICO DAM

VALHALLA, NY 10595

Collection Point: ENTRY POINT

ID of Source: WWD1

Agency: Westchester County Water Agency

432 Michealian Office Building White Plains, NY 10601

Attn: Amanda Delgado

addt'l Report To:

Received By: KB JLM

Bottle No: 527776 527582 527550 527633

FB527219 W31 W41

Collected By: DELGADO

Collection Date: 10/24/2022 AT 10:23:00AM Submitted On: 10/24/2022 AT 11:27:00AM

PWS No.: 5903488

Type Descriptor: 022

Source ID: 000

Residual Cl2:

: Hq Free CI2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment: PFOA, PFAS 1,4 DIOXANE

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics PFAS by SF	PE, LC/MS/MS						
EPA537.1, R1.0	Perfluorooctanesulfonic Acid (PFOS)	< LOQ		ng/L	1.9	11/04/2022	RH
EPA537.1, R1.0	Perfluorooctanoic Acid (PFOA)	< LOQ		ng/L	1.9	11/04/2022	RH
EPA537.1, R1.0	Polyfluorinated Alkyl Substances (PFAS)	See Note		ng/L	1.9	11/04/2022	RH

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved: 12/14/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 3

Method Test Description		Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Note: EPA Method 537.1 analysis performe					view of the	sub-contracted re	sult confirms all
Quality Control acceptance criteria have sa	atisfied method	d and TNI require	ements. RWI	HJr			
Additional DEAC Compounds Identified							
Additional PFAS Compounds Identified: Analyte	Acronym	Chemical Abst	ract Services	Resul	t LOQ		
Allaryte		Registry Number		(ng/L)	(ng/L)		
Hexafluoropropylene oxide dimer acid /Ge		13252-13-6b	<1.				
N-ethyl perfluorooctanesulfonamidoacetic		SAA 2991-50-6		<1.9	1.9		
N-methyl perfluorooctanesulfonamidoaceti	ic acid NMeF0	DSAA 2355-31-9	9	<1.9	1.9		
Perfluorobutanesulfonic acid	PFBS	375-7	73-5	<1			
Perfluorodecanoic acid	PFDA	335-76-2		<1.9	1.9		
Perfluorododecanoic acid	PFDoA	307-55-1		<1.9	1.9		
Perfluoroheptanoic acid	PFHpA	375-85-9		<1.9	1.9		
Perfluorohexanesulfonic acid	PFHxS	355-4	16-4	<1			
Perfluorohexanoic acid Perfluorononanoic acid	PFHxA PFNA	307-24-4 375-95-1		<1.9 <1.9	1.9 1.9		
Perfluorotetradecanoic acid	PFTeD/		16.7	<1.5			
Perfluorotridecanoic acid	PFTrDA	72629-94		<1.9	1.9		
Perfluoroundecanoic acid	PFUnA	2058-94-8		<1.9	1.9		
11-chloroeicosafluoro-3-oxaundecane-1-su			763051-92-9c		1.9		
9-chlorohexadecafluoro-3-oxanone-1-sulfo			756426-58-1d	<1.9	1.9		
4,8-dioxa-3H-perfluorononanoic acid	ADONA	۹190 ا	05-14-4e	<1	1.9		
PFAS by SPE, LC/MS/MS for Field B	lank						
Perfluorooctanesulfonic Ad	cid (PFOS)	< LOQ		ng/L	2.10	11/07/2022	RH
Perfluorooctanoic Acid (PF	FOA)	< LOQ		ng/L	2.10	11/07/2022	RH
Polyfluorinated Alkyl Subs	tances (PFAS)	See Note		ng/L	2.10	11/07/2022	RH
Note: EPA Method 537.1 analysis performe	,		Ouglity Aceu	-	viou of tha		
Quality Control acceptance criteria have sa					Aleas Of the	sur-contracted re	oun commino an
accessly costs of acceptance of total stave of		· conce minioquine	J				
Additional PFAS Compounds Identified:							
Analyte	Acronym	Chemical Abst	ract Services	Result			
		Registry Number		(ng/L)	(ng/L)		
Hexafluoropropylene oxide dimer acid /Ge		13252-13-6b	<2.				
N-ethyl perfluorooctanesulfonamidoacetic		SAA 2991-50-6		<2.1	2.1		
N-methyl perfluorooctanesulfonamidoaceti				<2.1	2.1		
Perfluorobutanesulfonic acid Perfluorodecanoic acid	PFBS PFDA	375-7 335-76-2	3-0	<2 <2.1	.1 2.1		
Perfluorododecanoic acid	PFDoA	307-55-1		<2.1	2.1		
Perfluoroheptanoic acid	PFHpA	375-85-9		<2.1	2.1		
Perfluorohexanesulfonic acid	PFHxS	355-4	16-4	<2			
Perfluorohexanoic acid	PFHxA	307-24-4		<2.1	2.1		
Perfluorononanoic acid	PFNA	375-95-1		<2.1	2.1		
Perfluorotetradecanoic acid	PFTeD/			<2			
Perfluorotridecanoic acid	PFTrDA	72629-94		<2.1	2.1		
Perfluoroundecanoic acid	PFUnA	2058-94-8		<2.1	2.1		
11-chloroeicosafluoro-3-oxaundecane-1-su					2.1		
9-chlorohexadecafluoro-3-oxanone-1-sulfo			756426-58-1d		2.1		
4,8-dioxa-3H-perfluorononanoic acid	ADONA	4 9190	05-14-4e	< 2	2.1 2.1		
Comments: SAMPLE COULD NOT BE I WAS NOTIFIED JLM	RUN FOR 1,4	DIOXANE AS RI	EQUESTED D	DUE TO A	AN INSTRU	MENT FAILURE.	CLIENT
DL = Detection Limit LOQ = Limit of	f Quantitation	J=val	ue is an estim	ate		H = exceeds ho	lding time
Approved By Robert Hilbrandt	QA Offi	cer	Taxasarkan konsenir ihren essassan hannoomin keestatilisan daran eestatu konstaleristi 1970.	Date	Approved	: 12/14/2022	

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 THIS IS A COPY

Page 2 of 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: CROTON LAKE GATE HOUSE

YORKTOWN HEIGHTS, NY

Collection Point: ENTRY POINT

addt'l Report To:

ID of Source: CROTON AQ

Agency: Westchester County Water Agency

432 Michealian Office Building

White Plains, NY 10601

Attn: Amanda Delgado

Received By: KB JLM

Bottle No: 527579 527581 527578 527777

FB527233 W83 W95

Collected By: DELGADO

Collection Date: 10/24/2022 AT 8:56:00AM Submitted On: 10/24/2022 AT 11:33:00AM

PWS No.: 5903488

Type Descriptor: 022

Source ID: 000

: Hq

Free CI2:

Residual CI2:

Sample chilled on arrival?: YES

Sample Type: POT_SRC

Comment: PFOA, PFOS 1,4 DIOXANE

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Organics PFAS by SP	E, LC/MS/MS						
EPA537.1, R1.0	Perfluorooctanesulfonic Acid (PFOS)	3.3		ng/L	1.9	11/04/2022	RH
EPA537.1, R1.0	Perfluorooctanoic Acid (PFOA)	4.3		ng/L	1.9	11/04/2022	RH
EPA537.1, R1.0	Polyfluorinated Alkyl Substances (PFAS)	See Note		ng/L	1.9	11/04/2022	RH

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt

QA Officer

Date Approved: 12/14/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

THIS IS A COPY

Page 1 of 3

Method Test Description		Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Note: EPA Method 537.1 analysis perfo Quality Control acceptance criteria have	ormed by NYSDOH re satisfied method a	ELAP #11398. and TNI require	Quality Assu ements. RW	ırance re HJr	view of the	sub-contracted re	sult confirms al
Additional PFAS Compounds Identified	∤ .						
Analyte		Chemical Abst	ract Services	Resul	t LOQ		
, triony to	~	legistry Number		(ng/L)	(ng/L)		
Hexafluoropropylene oxide dimer acid		13252-13-6b	<1				
N-ethyl perfluorooctanesulfonamidoac		AA 2991-50-		<1.9	1.9		
N-methyl perfluorooctanesulfonamidoa				<1.9	1.9		
Perfluorobutanesulfonic acid	PFBS	375-7			.7 1.9		
Perfluorodecanoic acid	PFDA	335-76-2		<1.9	1.9		
Perfluorododecanoic acid	PFDoA	307-55-1		<1.9	1.9		
Perfluoroheptanoic acid	PFHpA	375-85-9		<1.9	1.9		
Perfluorohexanesulfonic acid	PFHxS	355-4	46-4	<1			
Perfluorohexanoic acid	PFHxA	307-24-4		3.1	1.9		
Perfluorononanoic acid	PFNA	375-95-1		<1.9	1.9		
Perfluorotetradecanoic acid	PFTeDA	376-(<1			
Perfluorotridecanoic acid	PFTrDA	72629-94		<1.9	1.9		
Perfluoroundecanoic acid	PFUnA	2058-94-8		<1.9	1.9		
11-chloroeicosafluoro-3-oxaundecane- 9-chlorohexadecafluoro-3-oxanone-1-s			763051-92-9c 756426-58-1d		1.9		
4,8-dioxa-3H-perfluorononanoic acid	ADONA		7 30420-30- iu 05-14-4e		1.9 1.9 1.9		
PFAS by SPE, LC/MS/MS for Field		9190	03-14-46		1.8 1.8		
Perfluorooctanesulfoni		< LOQ		na/l	1.9	11/07/2022	RH
Perfluorooctanoic Acid	, ,	< LOQ		ng/L			
	,			ng/L	1.9	11/07/2022	RH
Polyfluorinated Alkyl S	` '	See Note		ng/L	1.9	11/07/2022	RH
Note: EPA Method 537.1 analysis perfo Quality Control acceptance criteria hav	ormed by NYSDOH I e satisfied method a	ELAP #11398. ind TNI require	Quality Assu ements. RWI	rance re HJr	view of the	sub-contracted re	sult confirms al
Additional PFAS Compounds Identified							
Analyte		Chemical Absti	ract Services	Result	LOQ		
*		egistry Numbe		(ng/L)	(ng/L)		
Hexafluoropropylene oxide dimer acid	GenX HFPO-DA	13252-13-6b	<1.				
N-ethyl perfluorooctanesulfonamidoace		AA 2991-50-6		<1.9	1.9		
N-methyl perfluorooctanesulfonamidoa		AA 2355-31-9	9	<1.9	1.9		
Perfluorobutanesulfonic acid	PFBS	375-7	'3-5	<1	.9 1.9		
Perfluorodecanoic acid	PFDA	335-76-2		<1.9	1.9		
Perfluorododecanoic acid	PFDoA	307-55-1		<1.9	1.9		
Perfluoroheptanoic acid	PFHpA	375-85-9		<1.9	1.9		
Perfluorohexanesulfonic acid Perfluorohexanoic acid	PFHxS	355-4	16-4	<1.			
Perfluorononanoic acid	PFHxA PFNA	307-24-4 375-95-1		<1.9 <1.9	1.9		
Perfluorotetradecanoic acid	PFTeDA	375-95-1	16.7	<1.9	1.9 .9 1.9		
Perfluorotridecanoic acid	PFTrDA	72629-94-		<1.9	1.9		
Perfluoroundecanoic acid	PFUnA	2058-94-8		<1.9	1.9		
11-chloroeicosafluoro-3-oxaundecane-1			, 763051-92-9c		1.9		
9-chlorohexadecafluoro-3-oxanone-1-s	ulfonic acid 9CH	PF3ONS 7	756426-58-1d	<1.9	1.9		
4,8-dioxa-3H-perfluorononanoic acid	ADONA	91900)5-14-4e	<1	.9 1.9		
Comments: SAMPLE COULD NOT E WAS NOTIFIED JLM	BE RUN FOR 1,4 DI	OXANE AS RE	EQUESTED D	UE TO A	N INSTRU	MENT FAILURE.	CLIENT
DL = Detection Limit LOQ = Lim	it of Quantitation	J=valu	ue is an estim	ate		H = exceeds hol	ding time
8 8 8 8 8 7 7 7 7 7 7 7 7	04000	_	······································	***************************************			
Approved By Robert Hilbrandt	QA Office	P		Date	Approved	12/14/2022	
Approved By Robert Hilbrandt	QA Office	· · · · · · · · · · · · · · · · · · ·	and a supplication of the	Date	Approved	: 12/14/2022	

NYS ELAP # 10108 (914) 231-1620

Page 2 of 3

LEAD & COPPER

Lead and copper testing is performed under reduced monitoring.

2022 LEAD AND COPPER RULE MONITORING REPORT Period: (2022-Annual Reduced Monitoring)

System's Name:	Village of Tarrytown Shaft #10 P.S. Dept. of Public Works	Type: X CWSNTNCWS
Address:	401 Neperan Road	Size: >100,000 50,001 to 100,000 X 10,001 to 50,000 3,301 to 10,000 501 to 3,300 101 to 500
Telephone #: Fax # Federal ID#: Contact Person:	914-631-0456 914-631-2258 00003461 Steve Cowles, Chief Ope	<100 erator, Type IB
THE RESULTS OF ATTACHED TO TH	LEAD AND COPPER TAP IS DOCUMENT (see attac	WATER SAMPLES MUST BE
# of Samples requir	red: <u>30</u> # of S	Samples submitted: 30
90 th Percentile Leve	el: Lead <u>4.39</u> µg/L	Copper <u>117.00</u> μg/l
TARGETING CRITI	RIA	
and lead solo	ructures with copper pipes ler installed after 1982 or le ervice lines (Tier 1)	ead pipes30
with lead solo and/or lead so (Only applica	ectures with copper pipes ler installed after 1982 or le ervice lines (Tier 1) ble if multi-family structures he structures served by the	s comprise more
# of buildings contain with lead sold		
# of sites that contain installed before	n copper pipes and lead so re 1983 (Tier 3)	lder <u>N/A</u>
		Total: 30

Explanation of Tier 2 and/or Tier 3 sites are used (attach additional pages if necessary)

N/A

LEAD SERVICES LINE SITES

# of samples required to be drawn from lead service line sites	_30_
# of samples actually drawn from lead service line sites	_30_
Difference (explain differences other than zero) Method used to identify lead service line sites (Attach additional pages if necessary)	0_

All recourses were found through water applications records (material evaluation) completed by the Village

THE RESULTS OF WATER QUALITY PARAMETER (WQP) SAMPLES MUST BE ATTACHED TO THIS DOCUMENT (see attached)

# of WQP Water Distribution samples required to be collected	40**
# of WQP Water Distribution samples actually collected	40
# of WQP entry point samples required to be collected	26**
# of WQP entry point samples actually collected and submitted	_26

^{**} WQP samples are collected and tested based on standard monitoring. WQP results for the two 6-monthly monitoring period (July 2021 – December 2021 and January 2022 - June 2022) are attached.

Signature

Stephen G. Cowles

Chief Plant Operator, 1B

Title

9/28/2022 Date

CERTIFICATION OF COLLECTION METHODS

I certify that:

- Each first draw tap sample for lead and copper is one liter in volume and has stood motionless in the plumbing system of each sampling site for at least six hours.
- Each first draw sample collected from a single-family residence has been collected from the cold-water kitchen tap or bathroom sink tap.
- Each first draw sample collected from a non-residential building has been collected at an interior tap from which water is typically drawn for consumption.
- Each first draw sample collected during an annual or tri-annual monitoring period has been collected in the months of June, July, August or September.
- Each resident who volunteered to collect tap water samples from his/her home has been properly instructed by the Village of Tarrytown Water Department in the proper methods for collecting lead and copper samples. I do not challenge the accuracy of these sampling results. Enclosed is a copy of the material distributed to residents explaining the proper collection methods, and a list of the results. Sampling was performed by the owners of house/buildings used in the reports.

Stephen G. Cowles

Name

Chief Plant Operator, 1B

Title

9/28/2022

CHANGE OF SAMPLING SITES

2022 Reduced Monitoring

Distance between sites (approximately): N/A

Targeting Criteria: Approved Monitoring Plan (Tier-1-approved sampling sites)

Reason for change (attach additional pages if necessary):

No additional standard monitoring sites were added or changed.

Signature

Stephen G. Cowles

Name

Chief Plant Operator, 1B

Title

Date

		Copper			lts 2021 (Jun		Lead		
Sample No.	Location #	Location	Sample Date	Copper (µg/L)	Sample No.	Location #	Location	Sample Date	Lead (µg/L
1	LC30	39 Terrace Ave	7/1/2022	<10.0	1	LC3	8 Hanford Place	7/3/2022	<1.00
2	LC21	23 High St.	7/1/2022	20.9	2	LC5	123 Grove St.	7/1/2022	<1.00
3	LC18	17 Neperan Ave.	7/19/2022	29.7	3	LC9	19 John St.	7/1/2022	<1.00
4	LC22	100 Benedict Ave.	7/6/2022	30.1	4	LC10	65 Riverview Ave.	7/1/2022	<1.00
5	LC5	123 Grove St.	7/1/2022	33.7	5	LC13	42 Independence St.	7/5/2022	<1.00
6	LC25	94 Riverview Ave.	7/5/2022	41.7	6	LC14	46 Front St.	7/1/2022	<1.00
7	LC2	84 Benedict Ave.	7/1/2022	44.8	7	LC17	50 LeGrande Ave.	7/1/2022	<1.00
8	LC20	157 Union Ave.	7/1/2022	48.2	8	LC18	17 Neperan Ave.	7/19/2022	<1.00
9	LÇ1	45 Rosehill Ave	6/30/2022	49.5	9	LC19	39 McKeel Ave.	7/1/2022	<1.00
10	LC4	26 Central Ave.	7/1/2022	55.6	10	LC21	23 High St.	7/1/2022	<1.00
11	LC7	70 S. Broadway	7/1/2022	55.8	11	LC22	100 Banedict Ave.	7/6/2022	<1.00
12	LC17	50 LeGrande Ave.	7/1/2022	64.9	12	LC23	38 McKeel Ave.	7/4/2022	<1.00
13	LC29	73 Riverview Ave.	7/1/2022	66,6	13	LC25	94 Riverview Ave.	7/5/2022	<1.00
14	LC10	65 Riverview Ave.	7/1/2022	74.1	14	LC26	60 Benedict Ave.	7/1/2022	<1.00
15	LC24	15 High St.	7/1/2022	74.5	15	LC27	87 Altamont Ave.	7/19/2022	<1.00
16	LC26	60 Benedict Ave.	7/1/2022	75.2	16	LC29	73 Riverview Ave.	7/1/2022	<1.00
17	LC23	38 McKeel Ave.	7/4/2022	79.7	17	LC30	39 Terrace Ave	7/1/2022	<1.00
18	LC13	42 Independence St.	7/5/2022	80,2	18	LC4	26 Central Ave.	7/1/2022	1.07
19	LC27	87 Altamont Ave.	7/19/2022	82.0	19	LC7	70 S. Broadway	7/1/2022	1:11
20	LC14	46 Front St.	7/1/2022	83.7	20	LC20	157 Union Ave.	7/1/2022	1.34
21	LC9	19 John St.	7/1/2022	84.1	21	LC28	15 E. Elizabeth St.	7/5/2022	1.40
22	LC11	144 S. Broadway	7/5/2022	84.6	22		88 Benedict Ave.	7/6/2022	1.44
23	LC3 E	Hanford Place	7/3/2022	85.7	23	LC11	144 S. Broadway	7/5/2022	2,58
24	LC16 2	9 Park Ave.	7/13/2022	110.0	24	LC24	15 High St.	7/1/2022	3.32
25	LC8 1	31 Rosehill Ave.	6/30/2022	111.0	25		84 Benedict Ave.	7/1/2022	3.79
26	LC15 9	7 Altamont Ave.	7/1/2022	116.0	26		131 Rosehill Ave.	6/30/2022	3.92
27	LC28 1	5 E. Elizabeth St.	7/5/2022	117,0	27		29 Park Ave.	7/19/2022	4.39
28	LC19 3	9 McKeel Ave.	7/1/2022	142.0	28		45 Rosehill Ave	6/30/2022	5.15
29	LC12 5	6 Grove St.	7/1/2022	158.0	29		56 Grove St.	7/1/2022	5.41
30	LC6 8	8 Benedict Ave.	7/6/2022	219.0	30		97 Altamont Ave.	7/1/2022	8.27

90th Percentile	(µg/L)	Meet Compliance
Regulatory Action Limit for Lead	15	VEC
90th Percentile value for Lead	4.39	YES
Dogulaton, Action Limits for Connec		
Regulatory Action Limits for Copper	1,300	YES
90th Percentile value for Copper	117.00	

Stephen G. Cowles, Chief Plant Operator, 18

Village of Tarrytown, NY

RADIOLOGICAL RESULTS

Radiological testing is performed once every nine years under reduced monitoring. The following results from 2021 are valid until 2029.

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: JLM

Collection Date: 11/16/2021 AT 11:45:00AM Submitted On: 11/16/2021 AT 12:08:00PM

Bottle No: C1284 1285 1286 1287 2103

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH: 7.47

Free Cl2: 1.64 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: RADIOLOGICAL SAMPLES 2021

Method	Test Description	Results Q	ualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
EPA 200.8	Uranium	< LOQ	ug/L	1.00 11/18/2021	MO
	tisfies Radionuclide Uranium Rule re nent uncertainty has not been calcula	, , , ,	r		
Radiological	<u> </u>				
EPA 903.1	Radium 226	0.235+/-0.307	pCi/L	01/14/2022	RH
Result s Minimu confide	ents: Analysis performed by NYSI satisfies Radionuclide Rule requir m Detectable Activity = 0.482 pCi nce interval, using a coverage fac ance criteria have satisfied metho	rements (Ra-226 + Ra-228 < 5 pt bl/L. Reported Uncertainty is the cotor of 1.96. Review of the sub-cotor of 2.96.	calculated Expande contracted result cor	•	
EPA 904.0	Radium 228	0.011+/-0.389	pCi/L	01/13/2022	RH
Result s Minimu confide	ents: Analysis performed by NYSI satisfies Radionuclide Rule requir m Detectable Activity = 0.829 pCi nce interval, using a coverage fac ance criteria have satisfied metho	rements (Ra-228 + Ra-226 < 5 pt bi/L. Reported Uncertainty is the cotor of 1.96. Review of the sub-c	calculated Expande contracted result cor	•	
EPA 900.0	Gross Alpha	(1.28)+/-0.523	pCi/L	01/19/2022	RH

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt QA Officer Date Approved: 01/20/2022

Environmental Laboratories EMAIL 1/20/2022

NYS ELAP # 10108 Report Number: 2325 Page 1 of 2

Method Test Description Results Qualifier Units DL/LOQ Analyzed on Validator

Comments: Analysis performed by NYSDOH ELAP # 10888.

Result satisfies Radionuclide Rule Requirements (Net Alpha < 15 pCi/L after exclusion of U238).

Note: The (negative) value denotes the sample activity was below the recorded background during the analysis. Minimum Detectable Activity = 2.74 pCi/L. Reported Uncertainty is the calculated Expanded Uncertainty at the 95% confidence interval, using a coverage factor of 1.96. Review of the sub-contracted result confirms all Quality Control acceptance criteria have satisfied method and NELAC requirements. RWHJr

EPA 900.0 Gross Beta 0.658+/-0.713 pCi/L 01/19/2022 RH

Comments: Analysis performed by NYSDOH ELAP # 10888.

Result satisfies Radionuclide Rule Requirements (Gross Beta < 50 pCi/L).

Minimum Detectable Activity = 1.62 pCi/L. Reported Uncertainty is the calculated Expanded Uncertainty at the 95% confidence interval, using a coverage factor of 1.96. Review of the sub-contracted result confirms all Quality Control acceptance criteria have satisfied method and NELAC requirements. RWHJr

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt QA Officer Date Approved: 01/20/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

Report Number: 2325

EMAIL 1/20/2022

Page 2 of 2

TTHMs & HAA5s

Testing for Total Trihalomethanes (TTHMs) and Haloacetic Acids (HAA5s) is performed quarterly.

Municipality:	Village of	Tarrytown, NY
Report Date:	2/16/2022	

Summary Tables - TTHM and HAA5 Concentration (µg/L)

	DATA v	alues												
Year	Quarter	Sample Date	Tarryhill Clubhouse ST2H2			Hackley School ST2H1			Senior Center ST2T2			Village Hall ST1A2		
			TTHM	HAA5	CL2	ПНМ	HAA5	CL2	TTHM	HAA5	CL2	TTHM	HAA5	CL2
	-1	2/3/2021	44.50	60.00	0.61	23.70	41.00	0.74	72.90	12.50	0.30	36.90	54.00	0.47
2021	2	05/05/21	59.50	74.00	0.64	24.70	40.00	0.75	60.80	66.00	0.36	51.10	66.00	0.49
	3	08/02/21	67.80	45.60	0.59	29.20	45.00	0.74	70.70	42.80	0.40	60.20	44.00	0.48
	4	11/03/21	46.80	79.00	0.47	101.40	87.00	0.63	91.40	77.00	0.46	58.60	84.20	0.39
	1	02/02/22	41.90	51.00	0.38	83.80	36.90	0.42	40.90	41.00	0.22	37.70	37.00	0.27
2022	2					1		-						
2022	3				. =						t = 0			
	4		i umi											

Year	Quarter	Sample Date	Tarryhill Clubhouse ST2H2		_	dey School		or Center	Village Hall ST1A2		
			TTHM	HAA5	TTHM	HAA5	TTHM	HAA5	TTHM	HAA5	
	1	2/2/2022	54.00	62.40	59.78	52.23	65.95	56.70	51.90	57.80	
2022	2	01/00/00									
2022	3	01/00/00						1-1			
	4	01/00/00									

NOTE:

* LRAA MCL for TTHM is 80 µg/L

* LRAA MCL for HAA5 is 60 µg/L

Lab Performing Analysis:

Eurofins

Last samples analyzed on:

2-7 to 2-9-2022

Mail to:

Westchester County Dept. of Health Bureau of Environmental Quality

25 Moore Ave

Mt. Kisco, NY 10549

Attn: Zaw Thein

Signature:

Chief Operator: Steve Cowles

Municipality:	Village of Tarrytown, NY					
Report Date:	5/25/2022					

Summary Tables - TTHM and HAA5 Concentration (µg/L)

	DATA V	alues												
Year	Quarter	Sample Date	Tarryhill Clubhouse ST2H2			Hackley School ST2H1			Senior Center ST2T2			Village Hall ST1A2		
			ТТНМ	HAA5	CL2	TTHM	HAA5	CL2	TTHM	HAA5	CL2	TTHM	HAA5	CL2
	1	2/3/2021	44.50	60.00	0.61	23.70	41.00	0.74	72.90	12.50	0.30	36.90	54.00	0.47
2021	2	05/05/21	59.50	74.00	0.64	24.70	40.00	0.75	60.80	66.00	0.36	51.10	66.00	0.49
	3	08/02/21	67.80	45.60	0.59	29.20	45.00	0.74	70.70	42.80	0.40	60.20	44.00	0.48
	4	11/03/21	46.80	79.00	0.47	101.40	87.00	0.63	91.40	77.00	0.46	58.60	84.20	0.39
	1	02/02/22	41.90	51.00	0.38	83.80	36.90	0.42	40.90	41.00	0.22	37.70	37.00	0.27
2000	2	05/03/22	54.80	50.00	0.22	27.90	34.00	0.59	47.30	44.00	0.26	39.80	36.00	0.24
2022	3											100		
	4													

Year	Quarter	Sample Date	Tarryhill Clubhouse ST2H2		Hackley School			or Center	Village Hall ST1A2		
				HAA5	TTHM	HAA5	TTHM	HAA5	TTHM	HAA5	
-	1	2/2/2022	54.00	62.40	59.78	52.23	65.95	56.70	51.90	57.80	
0000	2	05/03/22	52.83	56.40	60.58	50.73	62.58	51.20	49.08	50.30	
2022	3	01/00/00				7		Year ad			
	4	01/00/00									

NOTE:

* LRAA MCL for TTHM is 80 µg/L

* LRAA MCL for HAA5 is 60 µg/L

Lab Performing Analysis:

Eurofins

Last samples analyzed on:

5-7 to 5-12-2022

Mail to:

Westchester County Dept. of Health Bureau of Environmental Quality

25 Moore Ave

Mt. Kisco, NY 10549

Attn: Zaw Thein

Signature:

Chief Operator: Steve Cowles

Municipality:	Village of Tarrytown, NY
Report Date:	8/17/2022

Summary Tables - TTHM and HAA5 Concentration (µg/L)

	DATA v	alues												
Year Quarte		Sample Date	Tarryhill Clubhouse ST2H2		Hackley School ST2H1			Senior Center			Village Hall ST1A2			
			TTHM	HAA5	CL2	TTHM	HAA5	CL2	TTHM	HAA5	CL2	TTHM	HAA5	CL2
2021	1	2/3/2021	44.50	60.00	0.61	23.70	41.00	0.74	72.90	12.50	0.30	36.90	54.00	0.47
	2	05/05/21	59.50	74.00	0.64	24.70	40.00	0.75	60.80	66.00	0.36	51.10	66.00	0.49
	3	08/02/21	67.80	45.60	0.59	29.20	45.00	0.74	70.70	42.80	0.40	60.20	44.00	0.48
_	4	11/03/21	46.80	79.00	0.47	101.40	87.00	0.63	91.40	77.00	0.46	58.60	84.20	0.39
	1	02/02/22	41.90	51.00	0.38	83.80	36.90	0.42	40.90	41.00	0.22	37.70	37.00	0.27
0000	2	05/03/22	54.80	50.00	0.22	27.90	34.00	0.59	47.30	44.00	0.26	39.80	36.00	0.24
2022	3	08/03/22	69.70	18.30	0.21	66.30	27.50	0.68	56.60	37.00	0.22	39.80	40.00	0.37
	4							1 5		7.0				

Year (Quarter	Sample Date	Tarryhill Clubhouse ST2H2		Hackley School ST2H1		Senior Center ST2T2		Village Hall ST1A2	
			2022	1	2/2/2022	54.00	62.40	59.78	52.23	65.95
2	05/03/22	52.83		56.40	60.58	50.73	62.58	51.20	49.08	50.30
. 3	08/03/22	53.30		49.58	69.85	46.35	59.05	49.75	43.98	49.30
	4									

NOTE:

* LRAA MCL for TTHM is 80 µg/L

* LRAA MCL for HAA5 is 60 µg/L

Lab Performing Analysis: Last samples analyzed on: Eurofins

8-11 to 8-16-2022

Westchester County Dept. of Health Bureau of Environmental Quality

25 Moore Ave

Mt. Kisco, NY 10549

Attn: Zaw Thein

Signature:

Chief Operator: Steve Cowles

Municipality:	Village of Tarrytown, NY
Report Date:	11/2/2022

Summary Tables - TTHM and HAA5 Concentration (µg/L)

	DATA V	ralues												
Year Quarte		Sample Date	Tarryhill Clubhouse ST2H2		Hackley School ST2H1			Senior Center ST2T2			Village Hall ST1A2			
			TTHM	HAA5	CL2	TTHM	HAA5	CL2	TTHM	HAA5	CL2	TTHM	HAA5	CL2
	1	2/3/2021	44.50	60.00	0.61	23.70	41.00	0.74	72.90	12.50	0.30	36.90	54.00	0.47
2024	2	05/05/21	59.50	74.00	0.64	24.70	40.00	0.75	60.80	66.00	0.36	51.10	66.00	0.49
2021	3	08/02/21	67.80	45.60	0.59	29.20	45.00	0.74	70.70	42.80	0.40	60.20	44.00	0.48
	4	11/03/21	46.80	79.00	0.47	101.40	87.00	0.63	91.40	77.00	0.46	58.60	84.20	0.39
	1	02/02/22	41.90	51.00	0.38	83.80	36.90	0.42	40.90	41.00	0.22	37.70	37.00	0.27
	2	05/03/22	54.80	50.00	0.22	27.90	34.00	0.59	47.30	44.00	0.26	39.80	36.00	0.24
2022	3	08/03/22	69.70	18.30	0.21	66.30	27.50	0.68	56.60	37.00	0.22	39.80	40.00	0.37
	4	11/02/22	51.10	50.00	0.74	31.70	39.00	0.67	63.70	40.60	0.29	38.10	41.00	0.58

Year	Quarter	er Sample Date	Tarryhill Clubhouse ST2H2		Hackley School		Senior Center		Village Hall ST1A2	
				HAA5	TTHM	HAA5		HAA5		HAA5
	1	2/2/2022	54.00	62.40	59.78	52.23		56.70	51.90	57.80
0000	2	05/03/22	52.83	56.40	60.58	50.73	62.58	51.20	49.08	50.30
2022	3	08/03/22	53.30	49.58	69.85	46.35	59.05	49.75	43.98	49.30
	4	11/02/22	54.38	42.33	52.43	34.35	52.13	40.65	38.85	38.50

NOTE:

* LRAA MCL for TTHM is 80 µg/L

* LRAA MCL for HAA5 is 60 µg/L

Lab Performing Analysis:

Last samples analyzed on:

Eurofins

11-4- through 11-16-2022

Mail to:

Westchester County Dept. of Health Bureau of Environmental Quality 25 Moore Ave

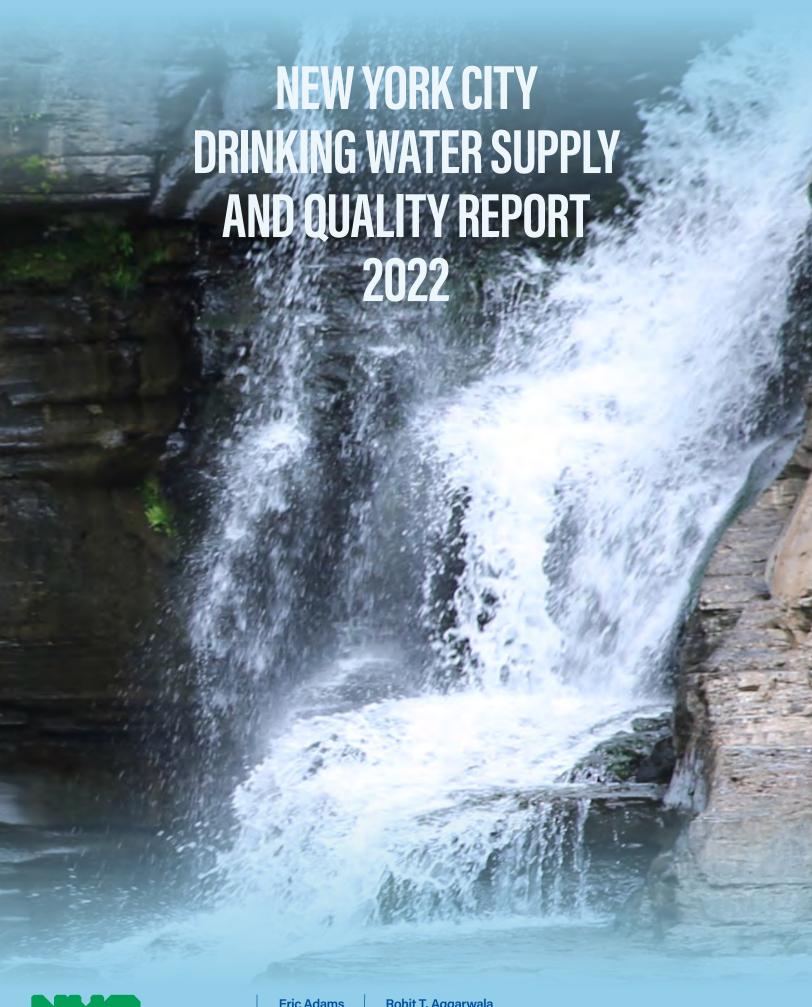
Mt. Kisco, NY 10549 Attn: Zaw Thein

Signature: All Chief Operator: Steve Cowles

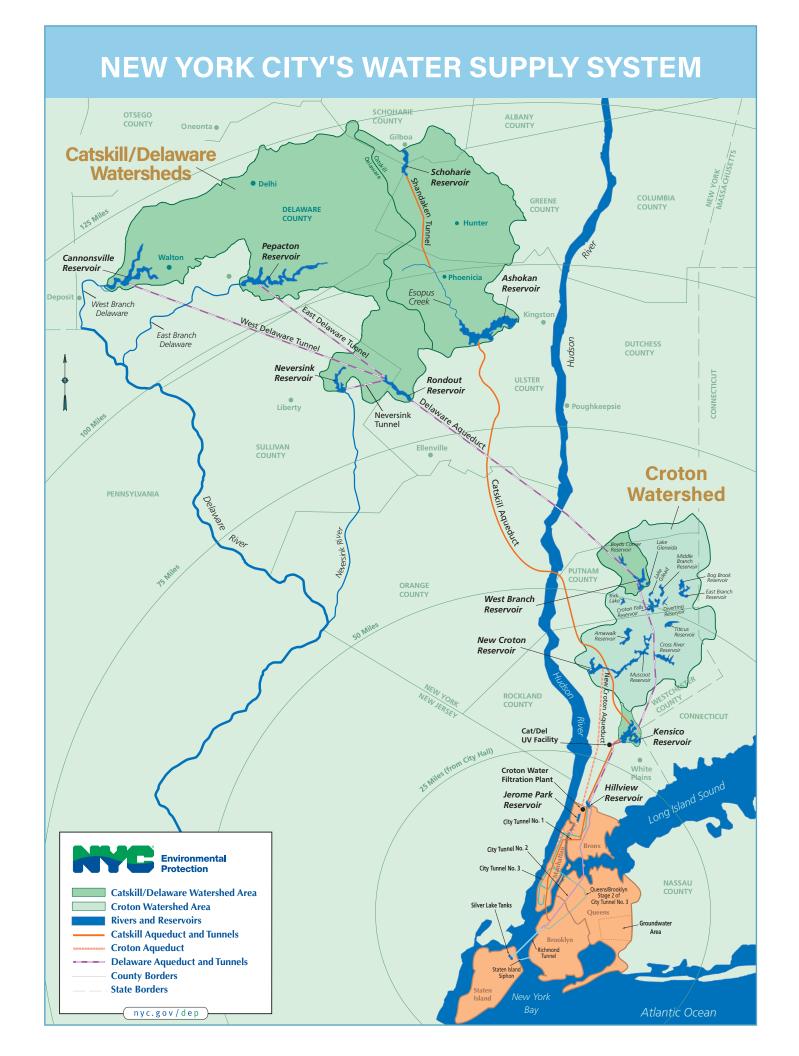
PATHOGEN DATA

Routine sampling for pathogen data is collected by NYC DEP throughout the year for the New Croton Reservoir and Kensico Reservoir, the Village's two sources of water. (Refer to attached 2022 NYC Drinking Water Supply and Quality Report - pages 8, 14, & 16)

New York City DEP - Cryptosporidium And Giardia Data Set (2022)


Cryptosporidium and Giardia Analytical Results for Source Water

		ytical Results for Source Wate		0 1:0:
Site	Date	Giardia / 50L	Cryptosporidium / 50L	Qualifiers
DEL18DT	1/10/2022	3	0	
CROGH	1/18/2022	0	0	
DEL18DT	1/18/2022	0	0	
DEL18DT	1/24/2022	0	0	
DEL18DT	1/31/2022	1	0	
DEL18DT	2/7/2022	0	0	
DEL18DT	2/14/2022	0	0	
DEL18DT	2/22/2022	2	0	
DEL18DT	2/28/2022	5	1	
DEL18DT	3/7/2022	2	0	
DEL18DT	3/14/2022	0	0	
DEL18DT	3/21/2022	2	0	
DEL18DT	3/28/2022	1	0	
DEL18DT	4/4/2022	0	0	
DEL18DT	4/11/2022	2	0	
CRO1B	4/18/2022	1	0	
DEL18DT	4/18/2022	6	0	
DEL18DT	4/25/2022	2	0	
DEL18DT	5/2/2022	1	0	
DEL18DT	5/9/2022	0	0	
DEL18DT	5/16/2022	0	0	
DEL18DT	5/23/2022	1	0	
DEL18DT	5/31/2022	2	0	
DEL18DT	6/6/2022	0	0	
DEL18DT	6/13/2022	1	0	
DEL18DT	6/21/2022	0	0	
DEL18DT	6/27/2022	0	1	
DEL18DT	7/5/2022	0	0	
DEL18DT	7/11/2022	0	0	
CRO1B	7/11/2022	0	0	
DEL18DT	7/11/2022	0	1	
DEL18DT	7/18/2022	0	0	
	8/1/2022	2	0	
DEL18DT				
DEL18DT	8/8/2022	0	0	
DEL18DT	8/15/2022	0	0	
DEL18DT	8/22/2022	0	0	
DEL18DT	8/29/2022	1	0	
DEL18DT	9/6/2022	0	0	
DEL18DT	9/12/2022	0	0	
DEL18DT	9/19/2022	0	0	
DEL18DT	9/26/2022	0	0	
CRO1B	10/3/2022	0	0	
DEL18DT	10/3/2022	0	0	
DEL18DT	10/11/2022	0	1	
DEL18DT	10/17/2022	0	0	
DEL18DT	10/24/2022	0	0	
DEL18DT	10/31/2022	0	0	
DEL18DT	11/7/2022	0	0	
DEL18DT	11/14/2022	1	0	
DEL18DT	11/21/2022	0	0	
DEL18DT	11/28/2022	1	0	
DEL18DT	12/5/2022	0	0	
DEL18DT	12/12/2022	0	0	
DEL18DT	12/19/2022	2	0	
DEL18DT	12/27/2022	1	0	


Source: https://data.cityofnewyork.us/Environment/DEP-Cryptosporidium-And-Giardia-Data-Set/x2s6-6d2j

DEP Contact Information NYC DEP Pathogen Laboratory - NHELAP #2069 71 Smith Ave, Kingston, NY 12401 Lab Director: Lisa McDonald

Phone: (845) 340-7741

Dear Friends:

On behalf of my nearly 6,000 colleagues at the Department of Environmental Protection (DEP), I am proud to announce that New York continues to deliver one billion gallons of some of the best tap water in the world to more than 9.8 million New Yorkers each and every day. Drink it in New York – the beauty of New York City water is that it tastes great too!

Here in New York we are fortunate to have a water supply that is well protected and operated by dedicated scientists, engineers, and other highly skilled professionals who have earned admiration among their colleagues throughout the world. DEP continuously monitors the water in the distribution system, upstate reservoirs, feeder streams, and wells that are potential sources for New York City's drinking water supply. We have made substantial investments to upgrade and rehabilitate our water supply infrastructure and protect the quality of our drinking water, with multi-billion dollar projects currently taking place at the Catskill and Delaware aqueducts, among others. More than \$1 billion has also been committed to administering a number of watershed protection and pollution prevention programs to maintain the high quality of our drinking water at the source.

This report illustrates that New York City's drinking water continued to be of excellent quality in 2022. DEP scientists collected 43,900 samples throughout our watershed and reservoir system, and from nearly 1,000 street-side sampling stations in every neighborhood across the city, analyzing those samples 577,300 times at our four water quality laboratories. Robotic monitoring stations on our reservoirs and in our streams provided another 2.7 million tests to ensure DEP was sending the best-quality water to New York City at all times.

Sincerely,

Rohit T. Aggarwala, Commissioner

NYC Chief Climate Officer

NEW YORK CITY'S WATER SUPPLY SYSTEM

New York City's water supply system provides more than one billion gallons of safe drinking water every day to more than 8.8 million residents of New York City and one million people living in the counties of Westchester, Putnam, Orange, and Ulster. In 2022, we delivered 100 million gallons per day to 70 communities and institutions outside NYC. In all, this system provides nearly half the population of New York State with high-quality drinking water.

New York City gets its drinking water from 19 reservoirs and three controlled lakes spread across a nearly 2,000-square-mile watershed. The watershed is located upstate in portions of the Hudson Valley and Catskill Mountains that are as far as 125 miles north of the city. New York City's water supply system is composed of two primary surface water supplies called the Catskill/Delaware and Croton. The City also has a permit to operate a groundwater supply in southeast Queens, although water from that system has not been delivered to customers in many years.

In 2022, New York City received a blend of drinking water from the Catskill/Delaware and Croton supplies. The Catskill/Delaware provided approximately 97.5 percent of the water, and approximately 2.5 percent was supplied by Croton. An estimated 16.4 percent of the water supply was lost. This number does not solely reflect water leaks and wastage, but rather metering calculations that are currently being updated with our new billing system.

New York City's water supply system provides more than one billion gallons of safe drinking water every day.

TREATING OUR DRINKING WATER

CATSKILL/DELAWARE SUPPLY

Due to the very high quality of our Catskill/Delaware supply, New York City is one of only five large cities in the country with a surface drinking water supply that does not utilize filtration as a form of treatment. The Catskill/ Delaware supply operates under a filtration waiver, referred to as the "Filtration Avoidance Determination" (FAD), and the water from this supply is treated using two forms of disinfection to reduce microbial risk.

Water is disinfected with chlorine, a common disinfectant added to kill germs and stop bacteria from growing on pipes, and then with ultraviolet (UV) light at the Catskill/Delaware UV Disinfection Facility. The facility, located in Westchester County, is the largest of its kind in the world and is designed to disinfect more than two billion gallons of water per day. At this facility, exposure to UV light inactivates potentially harmful microorganisms without changing the water.

DEP also adds food grade phosphoric acid, sodium hydroxide, and fluoride to the water before sending it into distribution. Phosphoric acid is added because it creates a protective film on pipes that reduces the release of metals, such as lead, from service lines and household plumbing. Sodium hydroxide is added to raise the pH, which reduces corrosion of household plumbing. Fluoride is added to improve dental protection, and is effective in preventing cavities, at a federally approved level of 0.7 mg/L. During 2022 only 0.35 percent of the water produced by Catskill/Delaware supply was not fluoridated.

CROTON SUPPLY

The Croton supply is filtered at the Croton Water Filtration Plant, located underground in the Bronx. The plant can treat up to 290 million gallons of drinking water each day, which helps to ensure a large enough supply of water for the city to withstand droughts, periodically shut down other parts of the water supply, and respond to the potential effects of climate change. The Croton Water Filtration Plant first began operating in May 2015.

Once water arrives at the filtration plant it undergoes treatment to remove impurities. The treatment processes include coagulation, dissolved air flotation, filtration, and disinfection. During coagulation, chemicals are added to untreated water, causing any particulates to bunch together and become a mass of particles called floc. Then injected air bubbles float the floc to the top where it is skimmed off using a process called dissolved air flotation. Finally, the water flows through a filter bed removing any remaining particles. Just like the Catskill/ Delaware supply, Croton water is disinfected with chlorine and UV light to protect against potentially harmful microorganisms, and is treated with food grade phosphoric acid, sodium hydroxide, and fluoride. In 2022, 100 percent of the water produced by the plant was fluoridated.

DEP Scientists performed over 376,700 analyses on 32,300 samples from the distribution system in 2022

TESTING FOR QUALITY

DRINKING WATER SAMPLING AND MONITORING

DEP monitors the water in the distribution system, upstate reservoirs and feeder streams, and wells that are potential sources for New York City's drinking water supply. We continuously sample and conduct analyses for numerous water quality parameters, including microbiological, chemical, and physical measurements, throughout the watershed as the water enters the distribution system, and at nearly 1,000 water quality sampling stations throughout New York City.

In 2022, DEP performed more than 376,700 analyses on 32,300 samples from the distribution system, meeting all state and federal monitoring requirements. These data are summarized in tables starting on page 11. Additionally, DEP performed more than 200,600 analyses on 11,600 samples from the upstate reservoir watersheds and took more than 2.7 million robotic monitoring measurements to support FAD watershed protection programs and to optimize water quality.

REGULATION OF DRINKING WATER

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include microbial contaminants, inorganic contaminants, pesticides and herbicides, organic chemical contaminants, and radioactive contaminants.

To ensure that tap water is safe to drink, the New York State Department of Health (NYSDOH) and the United States Environmental Protection Agency (EPA) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The NYSDOH and the federal Food and Drug Administration's (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. The presence of contaminants does not necessarily indicate that water poses a health risk. These regulations also establish the minimum amount of testing and monitoring that each system must undertake to ensure that the tap water is safe to drink.

Visit epa.gov/safewater or health.ny.gov for more information about drinking water.

PROTECTING OUR WATER AT THE SOURCE

FILTRATION AVOIDANCE DETERMINATION (FAD)

DEP has funded and administered several watershed protection and pollution prevention programs to maintain the high quality of our drinking water, since 1993. These science-based strategies are designed to protect New York City's drinking water at its source by keeping pollution out of our reservoirs and the streams, creeks, and rivers that feed them.

NYSDOH issued mid-term revisions to the 2017 FAD on December 29, 2022, that allow DEP to continue operating the Catskill/Delaware supply without filtration through at least 2027. DEP has committed an estimated \$1 billion to comply with the FAD, which goes towards our watershed programs that conserve watershed lands, upgrade wastewater infrastructure, implement clean water strategies on watershed farms, and manage streams, forests, and other natural resources that affect water quality.

SOURCE WATER ASSESSMENT PROGRAMS

Federal regulations require states to develop and implement source water assessment programs to identify the areas that supply public tap water, inventory contaminants, assess water system susceptibility to contamination, and inform the public of the results. The states are given a great deal of flexibility on how to implement source water assessment programs. These assessments are created using available information to help estimate the potential for source water contamination. Because of DEP's extensive watershed protection and pollution prevention programs, NYSDOH does not find it necessary to perform a source water assessment on the New York City water supply.

CAPITAL UPGRADES

DEP has continued to make substantial investments to upgrade and rehabilitate our water supply infrastructure, which stretches more than 125 miles from Midtown Manhattan to the northern Catskills, protecting the quality of our drinking water at its source. Infrastructure construction milestones reached in 2022, included preparatory work for the largest capital repair project in DEP history: the Delaware Aqueduct's Rondout-West Branch Bypass Tunnel 600 feet below the Hudson River near Newburgh. That new 2 ½ mile long tunnel section will bypass a leaking section of the 80-year-old aqueduct and is expected to be connected between fall and spring 2023-24.

Additionally, DEP staff and consulting engineers completed the environmental review process for the upcoming Hillview Reservoir Improvement Project in Yonkers, a major overhaul of the water treatment and chemical storage facilities as well as all the aging water management infrastructure at the reservoir. Hillview, at more than 100 years old, plays an essential role as the balancing reservoir that ensures the system provides water as consumption changes during the course of the day.

About 15 miles to the north of Hillview, skilled workers at the Kensico Reservoir completed a shoreline stabilization project adjacent to the primary treatment facilities for the vast majority of the City's drinking water supply. This FAD required project, completed on time and under budget, included replacing 1,400 linear feet of shoreline with carefully placed rocks commonly installed to protect shorelines from scouring and erosion. Projects like this, expected to be expanded in coming years, will stabilize and strengthen fragile shorelines located near water supply against severe storms of the future.

DEP engineers and scientists also began initial environmental reviews for the upcoming Ashokan Century Project (ACP). Expected to be the largest public works project in the Catskills in more than half a century, the ACP includes rehabilitating infrastructure in and around the Ashokan Reservoir in Ulster County – placed into service in 1915 -- including dams, dikes, headworks, spillways and the Dividing Weir Bridge across the middle of the 12-mile-long reservoir.

DEP also continues to invest in its watershed protection programs, a worldwide model for preserving the quality of water at its source. In 2022, DEP stabilized the Batavia Kill stream that feeds the Schoharie Reservoir. The large and complex project restored a section of stream that has long been the largest single source of sediment in the watershed of that reservoir. In addition to protecting the quality of NYC's water supply, the work enhanced fish habitat and recreational opportunities in the region.

CONSERVING OUR SUPPLY

Although New York City has grown by more than 1.3 million people since 1980, demand for water has dropped by approximately 35 percent—making it one of the most water-efficient large cities in the country.

The average single-family household in New York City uses approximately 70,000 gallons of water each year at a cost of \$4.30 per 100 cubic feet of water (748 gallons), or about \$402 a year. Since nearly all customers also receive wastewater collection and treatment services, which cost about \$639, the combined annual water and sewer charge for the typical New York City household using 70,000 gallons per year is \$1,041, calculated at fiscal year 2023 rates, effective July 1, 2022.

Advances in technology have played a key role in the drop of water consumption, from the replacement of thousands of inefficient toilets through DEP's toilet replacement program, to an automated leak detection program, which helps our customers save both money and water by alerting homeowners to unusual spikes in water consumption. DEP has also partnered with other city agencies, colleges, and businesses to help conserve water by installing more than 400 spray shower timers in NYC Parks playgrounds, 34,000 efficient bathroom fixtures in 402 New York City public schools, more than 1,600 efficient bathroom fixtures in City-owned buildings including a hospital, and a water reuse station at the Fire Department of the City of New York's (FDNY) Fire Training Academy on Randall's Island, which includes a 40,000 gallon underground water storage tank used for calibrating equipment on pumper apparatus.

These, and other recent investments, have reduced overall demand for water by more than 16.4 million gallons per day. We plan to achieve a total savings of 20 million gallons per day through new and ongoing initiatives, including a water recirculation project in Central Park, a valve replacement project in Prospect Park, additional New York City public school fixture retrofits, and more.

DOS & DON'TS of Water Conservation

In or out of a drought, every New Yorker can save hundreds of gallons of water each week by following these simple water-saving tips.

BATHROOM

- ✓ Do take short showers and save 5 to 7 gallons a minute.
- ✓ Do fill the tub halfway and save 10 to 15 gallons.
- Do install water-saving toilets, shower heads and faucet aerators. Place a plastic bottle filled with water in your toilet tank if you can't switch to a low flow toilet.
- Don't run the water while shaving, washing your hands or brushing your teeth. Faucets use 2 to 3 gallons a minute.
- Don't use the toilet as a wastebasket, and don't flush it unnecessarily.

OUTDOORS

- ✓ Do use a self-closing nozzle on your hose.
- Don't water your sidewalk or driveway—sweep them clean.
- Don't over water your lawn or plants. Water before 9 a.m. or after 7 p.m.

KITCHEN & LAUNDRY

- Do run the dishwasher and washing machine only when full. Save even more by using the short cycle.
- ✓ Do install faucet aerators.
- Don't let the water run while washing dishes. Kitchen faucets use 2 to 3 gallons a minute. Filling a basin only takes 10 gallons to wash and rinse.
- Don't run water to make it cold. Have it chilled in the refrigerator, ready to drink.

EVERYWHERE

- ✓ Do repair leaky faucets and turn taps off tightly. A slow drip wastes 15 to 20 gallons each day.
- Don't open fire hydrants.

TO LEARN MORE, CALL 311.

CRYPTOSPORIDIUM AND **GIARDIA**

DEP maintains a comprehensive program to monitor in source waters and key streams for the presence of *Cryptosporidium* and *Giardia*, microscopic organisms that can cause disease. Disease and syndromic surveillance continue to indicate that there have been no outbreaks of the diseases they cause, cryptosporidiosis and giardiasis, attributed to consuming tap water in New York City. *Cryptosporidium* and *Giardia* data are presented on page 14 of this report.

Federal and state law requires all water suppliers to notify their customers about the potential risks from *Cryptosporidium* and *Giardia*. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Some people may be more vulnerable to disease causing microorganisms, or pathogens in drinking water than the general population. Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly individuals, and infants, can be particularly at risk from infections. These people should seek advice from their health care providers about their drinking water.

EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium*, *Giardia*, and other microbial contaminants are available from EPA's Safe Drinking Water Hotline at 1-800-426-4791.

HILLVIEW RESERVOIR CONSENT JUDGEMENT

The Hillview Reservoir is the final stop for drinking water from the Catskill/Delaware System before it enters the city's distribution system. The City and DEP entered into a Consent Decree and Judgement with the United States and New York State, effective May 15, 2019, which sets forth a schedule of compliance for the City to cover the Hillview Reservoir as required by the Long Term 2 Enhanced Surface Water Treatment Rule (40 C.F.R §141.714). DEP and the City complied with all 2022 commitments due under the Decree.

HAA5 NOTICE OF VIOLATION

On February 25, 2022, DEP received a Notice of Violation (NOV) (ID#2022001) for the exceedance of the MCL for haloacetic acids (HAA5), which is based on the average of the four most recent quarterly samples at a particular monitoring location, called the Locational Running Annual Average (LRAA). Each calendar quarter, drinking water samples are collected at locations throughout the city for HAA5 that are used to determine compliance with

the standard of 60 micrograms per liter. One site (50250, Grymes Hill, 10301) out of 20 sampled on February 1, 2022, had an LRAA that exceeded the standard (see table on page 13, footnote (15, 16) on page 16). This was the second consecutive quarter of an HAA5 MCL exceedance at this site. DEP took a multi-step approach to correct this exceedance, including adjustments to the operation of our reservoir system, a reduction in the amount of chlorine used, and adjustments to our in-city distribution system. As a result, all sites were in compliance the rest of 2022.

The likely cause of the elevated level of HAA5 was the intense rainfalls during Tropical Storms Henri and Ida in the fall of 2021, which washed organic material into the upstate reservoirs. Haloacetic acids are formed when organic material in the water combines with chlorine, which is the most commonly used disinfectant in New York State. Chlorine is used as a disinfectant to kill bacteria and viruses that could cause illnesses; and is therefore beneficial to public health. The amount of HAA5 in drinking water can vary, depending on the amount of natural organic material in the source water, the amount of chlorine added, the temperature and a variety of other factors. The following paragraph provides a general summary of the health effects of haloacetic acids, which may occur at much higher exposure levels than what could result through normal use of the water.

Some studies suggest that people who drank chlorinated drinking water containing disinfection by-products (including haloacetic acids) for long periods of time (e.g., 20 to 30 years) may have an increased risk for cancer. However, how long and how frequently people actually drank the water, and how much haloacetic acids the water contained is not known for certain. Therefore, the evidence from these studies is not strong enough to conclude that the observed increased risk for cancer is due to haloacetic acids, other disinfection by-products, or some other factor. Studies of laboratory animals show that the two haloacetic acids, dichloroacetic acid and trichloroacetic acid, can cause cancer following exposure to high levels over their lifetimes. Dichloroacetic acid and trichloroacetic acid are also known to cause other effects in laboratory animals after high levels of exposure, primarily on the liver, kidney, and nervous system and on their ability to bear healthy offspring. The risks for adverse health effects from haloacetic acids in drinking water are small compared to the risk for illness from drinking inadequately disinfected water.

LEAD IN DRINKING WATER: FREQUENTLY ASKED QUESTIONS

IS THERE LEAD IN MY DRINKING WATER?

New York City's award-winning tap water is delivered virtually lead-free through 7,000 miles of lead-free aqueducts, tunnels, and water mains in the city's water supply system. However, homes built prior to 1961 may have lead service lines (which connect your house to the city's water main in the street), and some homes, regardless of the year they were built, could have household plumbing and internal fixtures that contain lead. Although New York City takes extensive steps to protect water in homes that may have lead in their plumbing, lead from plumbing may still be released into a home's drinking water. Lead levels at your home may be higher than at other homes in the community because of materials used in your home's plumbing. DEP is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

HOW CAN I FIND OUT IF I HAVE A LEAD SERVICE LINE?

Visit **nyc.gov/leadfree** to view an interactive map. This map offers historical information largely based on thirdparty plumbing records, supplemented in some cases by information gathered during inspections.

HOW CAN I TEST THE WATER IN MY HOME?

DEP offers free lead test kits to all New York City residents. Call 311 or visit nyc.gov/apps/311 to request a free lead test kit. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at

epa.gov/safewater/lead

WHAT ARE THE HEALTH EFFECTS OF LEAD?

Exposure to lead can cause serious health problems, especially for pregnant women, infants, and young children. For more information, visit nyc.gov/lead.

HOW CAN I LIMIT MY LEAD EXPOSURE?

RUN YOUR TAP

for 30 seconds to 2 minutes before using water for drinking or cooking, when your water has been sitting for several hours.

Use Cold Water

for cooking, drinking, or preparing infant formula. Hot tap water is more likely to contain lead and other metals.

Remove & Clean

the faucet screen monthly (also called an aerator), where small particles can get trapped.

Hire

a licensed plumber to identify and replace plumbing fixtures and/or service line that contain lead.

HOW TO READ THE NEW YORK CITY 2022 DRINKING WATER QUALITY TESTING RESULTS

The following section of this report compares the quality of your tap water to federal and state standards for each parameter (if applicable). The monitoring results show that New York City's drinking water continues to be of excellent quality.

The following tables reflect the compliance monitoring results for all regulated and non-regulated parameters, the number of samples collected, the range of values detected, the average of the values detected, and the possible sources of the parameters, unless otherwise footnoted. The monitoring frequency of each parameter varies and is parameter specific. Data presented are for the Catskill/Delaware and Croton supplies, which were the only sources of water in 2022.

The table on page 15 represents those parameters monitored for, but not detected in any sample. Most of our data are representative of 2022 testing; concentrations of parameters or contaminants do not change frequently.

THE NEW YORK CITY 2022 DRINKING WATER QUALITY TESTING RESULTS

Detected Conventional Physical and Chemical Parameters

PARAMETER	NYSDOH MCL (Highest Level Allowed)	EPA MCLG (Ideal Goal)	# SAMPLES	RANGE	AVERAGE	MCL VIOLATION	LIKELY SOURCES IN DRINKING WATER
Alkalinity (mg/L CaCO ₃)	-		308	15 - 70	21	No	Erosion of natural deposits
Aluminum (μg/L)	50 - 200 ⁽¹⁾		308	7 - 78	19	No	Erosion of natural deposits
Barium (mg/L)	2	2	308	0.01 - 0.04	0.02	No	Erosion of natural deposits
Bromide (µg/L)	_ (2)		8	8 - 35	20	No	Naturally occurring
Calcium (mg/L)	-		308	5 - 26	7	No	Erosion of natural deposits
Chloride (mg/L)	250		308	10 - 80	15	No	Naturally occurring; road salt
Chlorine Residual, Free (mg/L)	4 (3)		15,240	ND - 1.2	0.6 (3)	No	Water additive for disinfection
Chromium (µg/L)	100		308	ND - 3	ND	No	Erosion of natural deposits
Color - distribution system (color units - apparent)	-		13,413	3 - 54	7	No	Presence of iron, manganese, and organics in water
Color - entry points (color units - apparent)	15		1,825	3 - 18	7	No	Presence of iron, manganese, and organics in water
Copper (mg/L)	1.3 (4)	1.3	308	ND - 0.054	0.006	No	Corrosion of household plumbing; erosion of natural deposits
Corrosivity (Langelier index)	_ (5)		257	-2.88 to -1.05	-2.25	No	
Fluoride (mg/L)	2.2	4	2,071	ND - 0.8	0.7	No	Water additive which promotes strong teeth; erosion of natural deposits
Hardness (mg/L CaCO ₃)	-		308	16 - 99	24	No	Erosion of natural deposits
Hardness (grains/gallon[US]CaCO ₃) ⁽⁶⁾	-		308	1 - 6	1	No	Erosion of natural deposits
Iron (μg/L)	300 (7)		308	ND - 76	31	No	Naturally occurring
Lead (μg/L)	15 ⁽⁴⁾		308	ND - 6	ND	No	Erosion of natural deposits
Magnesium (mg/L)	-		308	1 - 8.6	1.7	No	Erosion of natural deposits

Continued on next page

Detected Conventional Physical and Chemical Parameters (continued)

PARAMETER	NYSDOH MCL (Highest Level Allowed)	EPA MCLG (Ideal Goal)	# SAMPLES	RANGE	AVERAGE	MCL VIOLATION	LIKELY SOURCES IN DRINKING WATER
Manganese (μg/L)	300 (7)		308	ND - 49	16	No	Naturally occurring
Nickel (μg/L)	-		308	ND - 1.2 ⁽⁸⁾	ND	No	Erosion of natural deposits
Nitrate (mg/L nitrogen)	10	10	308	0.08 - 0.45	0.13	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
pH (pH units)	6.8 - 8.2 ⁽⁹⁾		15,240	6.8 - 10.1 ⁽⁹⁾	7.3	No	
Phosphate, Ortho- (mg/L)	1 - 4 (9)		11,025	0.8 - 4.8 (9)	2.2	No	Water additive for corrosion control
Potassium (mg/L)	-		308	0.5 - 2.6	0.7	No	Erosion of natural deposits
Silica [silicon oxide] (mg/L)	-		231	2 - 6.4	2.7	No	Erosion of natural deposits
Sodium (mg/L)	NDL (10)		308	7 - 53	12	No	Naturally occurring; road salt; water softeners; animal waste
Specific Conductance (µS/cm)	-		15,238	76 - 488	101	No	
Strontium (µg/L)	-		308	15 - 79	22	No	Erosion of natural deposits
Sulfate (mg/L)	250		308	3 - 35	5	No	Naturally occurring
Temperature (°F)	-		15,240	35 - 83	56	No	
Total Dissolved Solids (mg/L)	500 (1)		258	39 - 244	62	No	Metals and salts naturally occurring in the soil; organic matter
Total Organic Carbon (mg/L)	-		408	0.7 - 2.0	1.7	No	Organic matter naturally present in the environment
Total Organic Carbon - source water (mg/L)	_ (2)		8	2.1 - 4.2	3.1	No	Organic matter naturally present in the environment
Turbidity (11) - distribution system (NTU)	5 (12)		13,413	ND - 4.1	1.0 (12)	No	Soil runoff
Turbidity (11) - source water (NTU)	5 ⁽¹³⁾		-	-	2.0 (13)	No	Soil runoff
Turbidity (11) - filtered water (NTU)	0.3 (14)		-	-	0.4 (14)	No	Soil runoff
UV 254 (absorbance/cm)	-		365	0.011 - 0.045	0.032	No	Organic matter naturally present in the environment
Zinc (mg/L)	5		308	ND - 0.036	ND	No	Naturally occurring

Continued on next page

Detected Organic Parameters

PARAMETER	NYSDOH MCL (Highest Level Allowed)	EPA MCLG (Ideal Goal)	# SAMPLES	RANGE	AVERAGE	MCL VIOLATION	LIKELY SOURCES IN DRINKING WATER
Bromochloroacetic Acid (µg/L)	50		304	ND - 2.2	1.2	No	By-product of drinking water chlorination
Bromodichloroacetic Acid (µg/L)	50 ⁽²⁾		80	1 - 5	3	No	By-product of drinking water chlorination
Chlorodibromoacetic Acid (µg/L)	50 ⁽²⁾		80	ND - 0.6	ND	No	By-product of drinking water chlorination
Haloacetic Acid 5 (HAA5) (µg/L)	60 ⁽¹⁵⁾		304	4 - 60	61 (15)	Yes (16)	By-product of drinking water chlorination
Haloacetic Acid Brominated (HAA6Br) (μ g/L)	_ (2)		80	2 - 9	4	No	By-product of drinking water chlorination
Haloacetic Acid 9 (HAA9) (µg/L)	_ (2)		80	31 - 82	53	No	By-product of drinking water chlorination
Hexachlorocyclopentadiene (µg/L)	5		24	ND - 0.1	ND	No	Discharge from chemical factories
Phenanthrene	50		82	ND - 0.16	ND	No	Incomplete combustion of wood and fossil fuels
Total Organic Halogen (μg/L)	-		137	116 - 245	183	No	By-product of drinking water chlorination
Total Trihalomethanes (TTHM) (µg/L)	80 (15)		304	4 - 72	55 ⁽¹⁵⁾	No	By-product of drinking water chlorination

Detected Microbial Parameters

PARAMETER	TT (Highest Level Allowed)	EPA MCLG (Ideal Goal)	# SAMPLES	RANGE	# SAMPLES POSITIVE	AVERAGE	HIGHEST MONTH % POSITIVE	ASSESSMENT TRIGGERED	LIKELY SOURCES IN DRINKING WATER
"Total Coliform Bacteria (% of samples positive/ month)"	5% (17)	0	9,798	-	60	-	4.3%	No	Naturally present in the environment
Heterotrophic Plate Count (CFU/mL)	-	-	12,058	ND - 1568	223	ND	-	-	Naturally present in the environment

Lead and Copper Rule Residential Tap Sampling

PARAMETER	NYSDOH AL	EPA MCLG (Ideal Goal)	90% OF YOUR LEVELS WERE LESS THAN	RANGE	# SAMPLES EXCEEDING AL	EXCEEDANCE	LIKELY SOURCES IN DRINKING WATER
Copper (mg/L)	1.3	1.3	0.194	0.01 - 3.20	1 out of 356	No	Corrosion of household plumbing
Lead (µg/L)	15	0	11	ND - 300	25 out of 356	No	Corrosion of household plumbing

Continued on next page

Cryptosporidium and Giardia Source Water Sampling (18)

PARAMETER	RESERVOIR	# SAMPLES	# SAMPLES POSITIVE	RANGE	LIKELY SOURCES IN DRINKING WATER
	Kensico	52	4	0 - 1	
Cryptosporidium (oocysts/50L)	Hillview	52	3	0 - 1	Animal fecal waste
	Croton	4	0	0	
	Kensico	52	21	0 - 6	
Giardia (cysts/50L)	Hillview	52	12	0 - 4	Animal fecal waste
	Croton	4	1	0 - 1	

UNITS AND ABBREVIATIONS

CaCO₃ = calcium carbonate

CFU/mL = colony forming units per milliliter

/cm = per centimeter

°F = degrees Fahrenheit

 μ g/L = micrograms per liter (10⁻⁶ grams per liter)

µS/cm = microsiemens per centimeter

mg/L = milligrams per liter (10⁻³ grams per liter)

MPN/100mL = most probable number per 100 mils

ND = parameter is not detected

NDL = no designated limits

NTU = nephelometric turbidity units

/50L = per 50 liters

DFFINITIONS

Action Level (AL):

The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible, using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG):

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL):

The highest level of a disinfectant allowed in drinking water. The addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT):

A required process intended to reduce the level of a contaminant in drinking water.

90th Percentile Value:

The values reported for lead and copper represent the 90^{th} percentile. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below the value. The 90^{th} percentile is equal to or greater than 90 percent of the lead and copper values detected at your water system.

The following parameters were not detected in any sample monitored for in 2022

Conventional Physical, Chemical and Microbial Parameters:

Antimony; Arsenic; Asbestos (19); Beryllium; Cadmium; Cyanide; *E. Coli*; Gross alpha (19); Lithium; Mercury; Nitrite; Radium 228 (19); Selenium; Silver; Thallium; Uranium (19)

Principal Organic Contaminants:

Benzene; Bromobenzene; Bromochloromethane; Bromomethane; tert-Butylbenzene; n-Butylbenzene; sec-Butylbenzene; Carbon tetrachloride; Chlorobenzene; Chloromethane; 2-Chlorotoluene; 4-Chlorotoluene; Dibromomethane; 1,3-Dichlorobenzene; 1,2-Dichlorobenzene; 1,4-Dichlorobenzene; Dichlorodifluoromethane; 1,1-Dichloroethane; 1,2-Dichloroethane; 1,1-Dichloroethane; 1,1-Dichloroethane; 1,1-Dichloropropane; 1,3-Dichloropropane; 1,1-Dichloropropane; 1,1-Dichloropropane; 1,1-Dichloropropane; 1,1-Dichloropropane; cis-1,3-Dichloropropane; trans-1,3-Dichloropropene; Ethylbenzene; Hexachlorobutadiene; Isopropylbenzene; p-Isopropyltoluene; Methylene chloride; n-Propylbenzene; Styrene; 1,1,1,2-Tetrachloroethane; 1,1,2,2-Tetrachloroethane; Tetrachloroethylene; Toluene; 1,2,4-Trichlorobenzene; 1,2,3-Trichloropropane; 1,2,3-Trichloropropane; 1,2,3-Trichloropropane; 1,2,3-Trichloropropane; 1,3,5-Trimethylbenzene; m,p-Xylene; o-Xylene

Specified Organic Contaminants:

Di(2-ethylhexyl)adipate; Alachlor; Aldicarb (Temik); Aldicarb sulfone; Aldicarb sulfoxide; Aldrin; Atrazine; Benzo(a)pyrene; Butachlor; Carbaryl; Carbofuran (Furadan); Chlordane; 2,4-D; Dalapon; 1,2-Dibromo-3-chloropropane; Di(2-ethylhexyl)phthalate; Dicamba; Dieldrin; Dinoseb; 1,4-Dioxane; Diquat; Endothall; Endrin; Ethylene dibromide (EDB); Glyphosate; Heptachlor epoxide; Heptachlor; Hexachlorobenzene; 3-Hydroxycarbofuran; Lindane; Methomyl; Methoxychlor; Methyl-tertiary-butyl-ether (MTBE); Metolachlor; Metribuzin; Oxamyl (Vydate); Pentachlorophenol; Perfluorooctanesulfonic acid (PFOS); Picloram; Polychlorinated biphenyls (PCBs); PCB 1016 Aroclor; PCB 1221 Aroclor; PCB 1232 Aroclor; PCB 1242 Aroclor; PCB 1248 Aroclor; PCB 1254 Aroclor; PCB 1260 Aroclor; Propachlor; Simazine; 2,3,7,8-TCDD (Dioxin); Toxaphene; 2,4,5-TP (Silvex); Vinyl chloride

Unspecified Organic Contaminants:

Acenaphthene; Acenaphthylene; Acetochlor; Acetone; Acifluorfen; Allyl chloride; Ametryn; t-Amyl ether; tert-Amyl methyl ether; Anthracene; Atraton; Propoxur (Baygon); Bentazon; Benzo[a]anthracene; Benzo[b]fluoranthene; Benzo[g,h,i]perylene; Benzo[k] fluoranthene; Butylbenzylphthalate; beta-BHC; alpha-HCH; Bromacil; Bromoacetic acid; Bromoform; 1,3-Butadiene; tert-Butyl alcohol; tert-Butyl ethyl ether; Butylate; Butylated hydroxytoluene (BHT); Caffeine; Carbon Disulfide; gamma-Chlordane; alpha-Chlordane; trans-Chlordane; Chlorfenvinphos; Chlorobenzilate; 4-Chlorobiphenyl; 2-Chlorobiphenyl; 1-Chlorobutane; Chlorodifluoromethane; 11-Chloroeicosafluoro-3-oxaundecane-sulfonic acid; 9-Chlorohexadecafluoro-3-oxanone-sulfonic acid; Chloroneb; Chlorothalonil (Draconil; Bravo); Chlorpropham; Chlorpyrifos (Dursban); Chrysene; Cyanazine; Cycloate; Hexafluoropropylene oxide dimer acid (HFPO-DA); DCPA(Dacthal); 2,4-DB; 2,4-DDD; 4,4'-DDD; 2,4-DDE; 4,4'-DDE; 2,4-DDT; 4,4'-DDT; DEET; delta-HCH; Diazinon; Dibenz[a,h] anthracene; Dibromoacetic acid; 3,5-Dichlorobenzoic acid; 2,4'-Dichlorobiphenyl; Dichlorrop; Dichlorvos (DDVP); Diethyl ether; Diethylphthalate; Di-isopropyl ether; Diisopropyl methylphosphonate; Dimethipin; Dimethoate; Dimethylphthalate; 2,4-Dinitrotoluene; 2,6-Dinitrotoluene; 4,8-dioxa-3H-perfluorononanoic acid (ADONA); Diphenamid; Disulfoton; Endosulfan I; Endosulfan II; Endosulfan sulfate; Endrin aldehyde; Endrin Ketone; EPTC; Ethion; Ethoprop; Ethyl methacrylate; N-ethyl Perfluorooctanesulfonamidoacetic acid; Etridiazole; Fenarimol; Fluoranthene; Fluorene; Fluridone; 2,2',3,4,4',5,5'-Heptachlorobiphenyl; 2,2',4,4',5,5'-Hexachlorobiphenyl; 2,2',3,4,4',5'-Hexachlorobiphenyl; 2,2',3,4',5',6-Hexachlorobiphenyl; Hexachloroethane; Hexazinone; Indeno[1,2,3-cd]pyrene; Isophorone; Malathion; Methiocarb; Methyl acetate; Methyl iodide; Methyl parathion; N-methyl Perfluorooctanesulfonamidoacetic acid; Mevinphos; MGK-264 isomer a & b; Molinate; Naphthalene; Napropamide; Di-n-Butylphthalate; Nitrofen; Di-N-octylphthalate; cis-Nonachlor; trans-Nonachlor; Norflurzon; Oxyfluorfen; Paraquat; Parathion; Pebulate; Pendimethalin; 2,3',4,4',5-Pentachlorobiphenyl; 2,3,3',4',6-Pentachlorobiphenyl; Pentachloroethane; Perfluorobutanesulfonic acid (PFBS); Perfluorodecanoic acid (PFDA); Perfluorododecanoic acid (PFDA); Perfluorobutanesulfonic acid (PFDA); Perfluorododecanoic acid (PFDA); Perfluorobutanesulfonic acid (PFDA); Perfluorododecanoic acid (PFDA); Perfluorobutanesulfonic acid (PFDA); Perfluorob acid (PFHpA); Perfluorohexanesulfonic acid (PFHxS); Perfluorohexanoic acid (PFHxA); Perfluorononanoic acid (PFNA); Perfluorooctanoic acid (PFOA); Perfluorotetradecanoic acid (PFTA); Perfluorotridecanoic acid (PFTDA); Perfluoroundecanoic acid (PFUnA); cis-Permethrin; trans-Permethrin; Permethrin (mixed isomers); Phorate; Phosphamidon; Profenofos; Prometon; Prometryn; Pronamide; Propazine; Pyrene; Simetryn; 2,4,5-T; Tebuconazole; Tebuthiuron; Terbacil; Terbuthylazine; Terbutryn; 2,2',3,5'-Tetrachlorobiphenyl; 2,2',5,5'-Tetrachlorobiphenyl; 2,3',4',5-Tetrachlorobiphenyl; Tetrachlorovinphos; Tetrahydrofuran; Thiobencarb; Triademefon; Tribufos; 2,4,4'-trichlorobiphenyl; 2,2',5-Trichlorobiphenyl; Trifluralin; Vernolate; Vinclozolin

Fourth Unregulated Contaminant Monitoring Rule (UCMR4) (2) and Emerging Contaminants:

Anatoxin-a; 1-Butanol; Butylated hydroxyanisole; Chlorpyrifos; Cylindrospermopsin; Dimethipin; Ethoprop; alpha-HCH; Germanium Total ICAP/MS; 2-Methoxyethanol; Microplastics (20); Monobromoacetic acid; Monochloroacetic acid; Oxyfluorfen; Profenofos; 2-Propen-1-ol; Quinoline; Tebuconazole; o-Toluidine; Total Microcystins; Total Permethrin (cis & trans); Tribromoacetic acid; Tribufos

2022 MONITORING DATA FOOTNOTES

- (1) EPA Secondary MCL: NYSDOH has not set an MCL for this parameter.
- (2) Monitored for under the Fourth Unregulated Contaminant Monitoring Rule (UCMR4) in 2018 and 2019. UCMR4 included source water monitoring for bromide and total organic carbon; EPA has not established an MCL for these parameters.
- (3) Value represents MRDL, which is a level of disinfectant added for water treatment that may not be exceeded at the consumer's tap without an unacceptable possibility of adverse health effects. The MRDL is enforceable in the same manner as an MCL and is the calculated running annual average. Data presented are the range of individual sampling results and the highest of the four quarterly running annual averages.
- (4) Action Level (not an MCL) measured at-the-tap. The data presented in this table were collected from sampling stations at the street curb. For at-the-tap monitoring, see the Lead and Copper Rule Residential Tap Sampling table.
- (5) A Langelier Index of less than zero indicates corrosive tendencies.
- (6) Hardness of up to 3 grains per gallon is considered soft water; between 3 and 9 is moderately hard water.
- (7) If iron and manganese are present, the total concentration of both should not exceed 500 μg/L.
- (8) Nickel was only detected in one sample on 6/7/22 at site 1SCL1 (Van Cortlandt Village, 10463).
- (9) NYSDOH established Optimal Water Quality Parameters (OWQP) under the Lead and Copper Rule which includes a range for pH and orthophosphate which are presented here. The reported average value for pH is the median value. The pH was elevated in two samples collected from site 3ISL4 (Randall's Island, 10035) on 2/3/22 and 3/3/22. Ortho-phosphate was greater than range in three samples collected from site 11750 (City Island, 10464) on 4/16/22, 4/28/22, and 7/2/22 due to an Optimization Control Study being conducted in this area of the system.
- (10) Water containing more than 20 mg/L of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/L of sodium should not be used for drinking by people on moderately restricted sodium diets.

- (11) Turbidity is a measure of cloudiness of the water. Turbidity is monitored because it is a good indicator of water quality, because high turbidity can hinder the effectiveness of disinfection, and because it is a good indicator of the effectiveness of our filtration system.
- (12) This MCL for turbidity is the monthly average rounded off to the nearest whole number. Data presented are the range of individual sampling results and the highest monthly average from distribution sites, which was in April 2022.
- (13) This MCL for turbidity is on individual readings taken every four hours at the unfiltered Catskill/ Delaware source water entry point. Value presented is the highest individual sampling result, which occurred on 12/4/2022.
- (14) This is a TT (performance standard) for the Croton Filtration Plant that > 5% of measurements/month must not exceed. The value presented is the highest single combined filter effluent turbidity measurement which occurred on 10/7/22. In 2022, 100% of turbidity results were <0.3 NTU.
- (15) The MCLs for HAA5 and TTHMs are the calculated locational running annual average (LRAA). The data in the Range column are the minimum and maximum values of all sample sites monitored in the distribution system whether for compliance purposes or not. The values in the Average column are the highest LRAA.
- (16) The HAA5 LRAA MCL was exceeded in the 1st quarter of 2022 at site 50250 sampled on 2/1/2022.
- (17) If a sample and one of its repeat samples are both positive for coliform bacteria and one of the two samples is positive for *E. coli*. This is a TT that triggers a Level 1 assessment if exceeded.
- (18) DEP collected samples of water leaving New Croton Reservoir and Kensico Reservoir, prior to chlorination and UV disinfection, and leaving Hillview Reservoir, prior to secondary disinfection with chlorine, and analyzed using EPA Method 1623.1.
- (19) NYSDOH allows monitoring for these contaminants less frequently than once per year. These data, though representative, are from 2020 except for Radium 228 which are from 2021.
- (20) Separate from the UCMR4, DEP tested for microplastics in 2018 and additional monitoring will be conducted in 2023.

CONTACT INFORMATION

Public Water System Identification Number (PWSID) NY7003493

NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION

Rohit T. Aggarwala, Commissioner // 718-595-3000 // nyc.gov/dep 59-17 Junction Blvd, Flushing, NY 11373

NEW YORK CITY WATER BOARD

Visit **nyc.gov/waterboard** for a list of upcoming meetings and information about opportunities to participate in decisions that affect water quality.

CONTAMINANTS QUESTIONS

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

CRYPTOSPORIDIUM AND GIARDIA QUESTIONS

DOHMH Bureau of Communicable Diseases // 347-396-2600

CUSTOMER BILLING QUESTIONS

DEP Customer Service // 718-595-7000 // nyc.gov/dep

LEAD IN DRINKING WATER QUESTIONS

DEP Lead Unit // 718-595-5364 // nyc.gov/dep/leadindrinkingwater

HEALTH QUESTIONS (WATER SUPPLY-RELATED)

DOHMH // Call 311 or 212-NEW YORK (639-9675) // nyc.gov/apps/311 NYSDOH Bureau of Water Supply Protection // 518-402-7650 // health.ny.gov

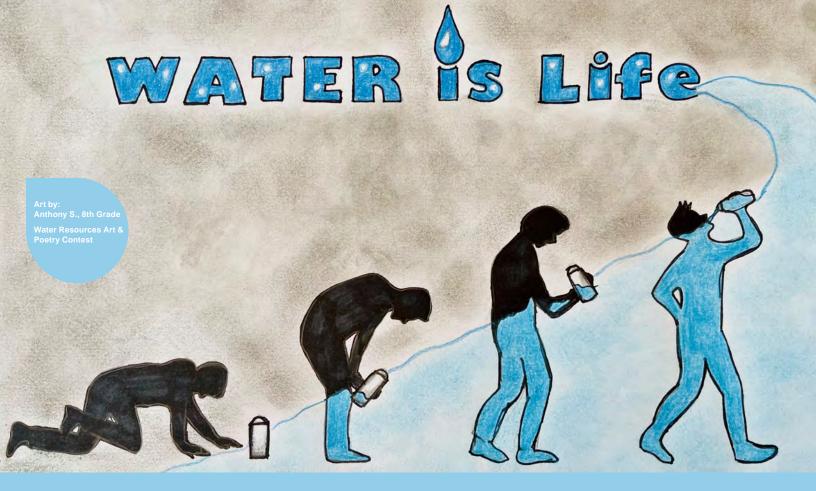
REPORT UNUSUAL COLOR, TASTE OR ODOR OF DRINKING WATER

Call 311 or 212-NEW YORK (639-9675) // nyc.gov/apps/311

REPORT POLLUTION, CRIME, OR TERRORISM IN THE WATERSHED

DEP Police and Security // 888-H2O-SHED (426-7433) // nyc.gov/dep

REQUEST ADDITIONAL COPIES OF THIS REPORT OR VIEW REPORT ONLINE


Call 311 or 212-NEW YORK (639-9675) // nyc.gov/waterqualityreport

TTY SERVICES

Call 212-504-4115

TEXT 311

311-692

This report contains important information about your drinking water.

Translate it, or speak with someone who understands it. Este reporte contiene información muy importante sobre el agua que usted toma. Haga que se la traduzcan o hable con alguien que la entienda.

Ce rapport contient des informations importantes sur votre eau potable. Traduisez-le ou parlez en avec quelqu'un qui le comprend bien.

Rapò sa a gen enfòmasyon ki enpòtan anpil sou dlo w'ap bwè a. Fè tradwi-l pou ou, oswa pale ak yon moun ki konprann sa ki ekri ladan-l.

Ten raport zawiera bardzo istotną informacje o twojej wodzie pitnej. Przetłumacz go albo porozmawiaj z kimś kto go rozumie.

В этом материале содержится важная информация относительно вашей питьевой воды. Переведите его или поговорите с кем-нибудь из тех, кто понимает его содержание.

這個報告中包含有關你的飲用水的重要信息。請將此報告翻譯成你的語言或者詢問懂得這份報告的人。

이 보고셔는 귀하의 식수에 관한 매우 중요한 정보를 포함하고 있습니다. 이 정보에 대해 이해하는 사람에게 그 정보를 번역하거나 통역해 받으십시오.

এই প্রতিবেদনে আপনার পানীয় জল সম্পর্কে গুরুত্বপূর্ণ তথ্য রয়েছে

يتضمن هذا التقرير معلومات هامة حول مياه الشرب الخاصة بك. ترجمه أو تحدث مع شخص يفهمه.

یہ رپورٹ آپ کے پینے کے پانی کے بارے میں اہم معلومات پر مشتمل ہے. اس کا ترجمہ کریں یا انسے بات کریں جو یہ رپورٹ سمجھتے ہیں.

TURBIDITY & TOTAL COLIFORM

Turbidity is measured daily to determine the cloudiness of the water.

Ten microbiological samples are collected per month.

Public Water System Name:	TACKYTOWN WATER SUPPLY	Public Water System ID: NY 5903461
Reporting Month/Year: O	TER Town, Village or City: TARRYTOWN 1/2022 Date Report Submitted: 02/2022	Source Water Type(s): Surface Ground GWUDI Purchase with subsequent chlorination Purchase Wout subsequent chlorination 4 log treatment required
	Company of the Compan	

		11		CHL	DRINATION		UI	ULTRAVIOLET RADIATION/OTHER TREATMENTS						
			Gas	seous	Liquid	Free			Ourse			CAUST		
Date	Source(s) in use	Treated water volume	Cylinder weight	Chlorine used/Day	Hypochlorite added to crock (GALLONS DR QUARTS)	chlorine residual at entry point	UV Unit active	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by	Рн	SODA GAL POR DAY		
1	DEL	1437			10	1.75					7.48	16		
2	1	882			8	1,22					7.45	10		
3		988			9	1.60		V			7,57	10		
4		1599			10	1,47					7,47	15		
5		Le 36			6	1,29					7,41	3		
6		1249			8	1,41					7.49	12		
7		847			7	1,11					7.41	6		
8		1453			11	1.16					7.46	13		
9		487			6	,91					7.47	7		
10		1704			13	1,10					7,48	16		
11		471			6	180					7,54	5		
12		1854			13	99					7.51	17		
13		57			3	,88					7.54	3		
14		1981			13	1.31					7.53	15		
15		523			6	1,06					7,51	6		
16		1600			11	1.06					7.53	12		
17		1739			14	1.10					7.56	11		
18		301			4	1,02					7.51	4		
19	46	1988			12	1.24					7.46	18		
20		682			5	1,20					7,49	7		
21		1344			10	1.08					7,61	12		
22		1846			10	1,06					7,62	14		
- 23		252			4	,85					7.58	4		
24		1978			14	1.14					7,40	163		
25		438			6	1,16					7,36	3		
26		1731			9	1.11					7.38	18		
27		1248			9	1,01					7.36	15		
28		763			5	. 79					7,47	6		
29		763			12	1,03					7.47	17		
30		188			5	198					7.45	4		
31	V	1988			13	,98					7.34	16		
OTAL		36,430			274							332		
AVG		1,175			9	1.08					7.48	11		

1.110	1111					11131 11 120
Chlorine Mix Ratio =	HIA	quarts/gallons of	NIA	% chlorine added to	NIA	gallons of water in crock
Date UV quartz sleeve la	ast cleaned:	DD/YY	Date UV lamp replaced:	MM/(DD/YV		
Alarm activation: 🛭 N	o Yes If "Yes,"	date of activation:	MM//DD/YY	Required Treatme	nt Residual Level:	mg/l
Reported by: 57	EPHEN GO	, COWLES	Title: CHIEF	OPERATOR	NYSDOH Operator Certification Number:	0033075
Signature: SU	plu el.	Corula	Da	maries OZ/08/Z	2 Operator Grade Level:	13

For Systems that Treat with Chlorine and/or Ultraviolet Radiation Bureau of Water Supply Protection Public Water System ID: NY 5903461 TARRYTOWN WATER Public Water System Name: County: WESTCHESTER Town, Village or City: Source Water Type(s): 25urface Ground **GWUDI** Reporting Month/Year: Date Report Submitted: Purchase with subsequent color nation Purchase w/out subsequent or lonnaries 4 log treatment required CHLORINATION ULTRAVIOLET RADIATION/OTHER TREATMENTS Liquid Free Gaseous Quartz chlorine Treated water Cylinder Chlorine Hypochlorite UV Unit Intensity Checked sleeve residual at Source(s) weight used/Day added to crock volume active meter cleaned by entry point Date in use >70% GALLENS/DAY 1.33 LBS GALLONS OR OWARTS VES VU YES NO INITIALS: , 60 2 ,60 3 ,60 ,70 4 5 ,70 ,76 ,77 ,75 8 0 ,74 10 81 11 92 195 12 13 ,82 .871 24 ,79 ,80 15 1.00 16 17 1.80 18 ,91 ,85 19 20 88 1.19 21 1.0 22 ,90 23 1,04 24 .95 25 193 26 27 190 ,879 28 29 190 ,90 30 31 190 27.26 TOTAL ,88 AVG NIA Chlorine Mix Ratio = quarts/gallons of % chlorine added to gallons of water in crock. Date UV quartz sleeve last cleaned: Date UV lamp replaced: MM DD VV MM DBVV Alarm activation: No ___ Yes _ If "Yes," date of activation: Required Treatment Residual Level: ma/l Title: CHIEF OPERATOR NYSDOH Operator Certification Number: 0033075 Reported by:

Date: 02/08/22

MM DDIVY

Operator Grade Level:

Signature:

Sample Location	Date of Sample	Sample Type 1. ROUTINE 2. REPEAT 3. TRIGGERED	Total Coliform Positive Y N	E. coli Positive Y N	Free Chlorine Residual	Population Served: //, ODO Number of microbiological monitoring samples requ	/ /	10
MARYMOUNT	1/3/22	1			1.21	Number of microbiological monitoring samples take	n:	0
HIGH TANK	115/22	1			179	Did a M&R violation occur? If "Yes," check reason (s) below:	Yes	MNO
WARNER LIBRARY	1/7/22	1			,41	Actual number of samples is fewer than required		
WASHINGTON ENGINE	1/10/22	1	OV		131	Did not collect/analyze repeat sample	1 116	
VILLAGE HALL	1/12/22	1			.26	Did not collect/analyze for E. coli for positive tota from routine / repeat sample	LCOLITORN	П
MAIN ST. FIREHOUSE	1/14/22	1			,26	Was triggered source water monitoring required?	Yes	PNO
DOUBLETHER HOTEL	1/18/22	1			,36	Did a MCL violation occur?	Yes	No No
TAPPAN LANDING APTE	11	1	OV	OV	142	If "Yes," check reason(s) below (see also Part 5, Table Additional information).	6 for	
HACKLEY SCHOOL	1/25/22				,61	For systems collecting less than 40 samples per n or more of the samples (routine and/or repeat) as		
NPW	1/27/22	1			.47	for total coliform (= total coliform MCL violation).		
HIGH TURB	1/17/22				1.12	For systems collecting 40 or more samples per mothan 5% of the samples (routine and/or repeat) a	are positi	
HIGH TURB	1/18/22				89	for total coliform (= total coliform MCL violation). The original sample was E.coli positive and at lea		at
HIGH TUBS	1/19/22	1			1.21	sample was positive for total coliform (= E.coli M		
[11011 101807	THE RESERVE					Reminder: System must collect a minimum of five (5)	rautine	
						microbiological monitoring samples during the mont a repeat sample collection unless waived (to minimu	h followin	ng
						sample) in writing by the local health department.	() Of the	
						As required by 5-1.72, "Operation of a Public Water S copy of this form shall be sent to your local health de		
						by the 10th calendar day of the next reporting period		ı
ample collector(s): STE ame of NYSDOH Certified Laboratory: id any MCL violation occur? If so, plea	WE	Powle STCHE.	STERL	Cour	эту (HBS & RESEARCH		
•	4							
lid an emergency or low pressure prob	lem occur? I	Did source	water bypa	ss an exist	ing treatme	nt process in the system? If so, please explain: NO		
Comments :								

Public W	ater System Nar	ne:	CENTRAL TENE	n Water S	246.5		Public	Water Syste	em ID: N	590346) 1		
County:	Westcheste	ŗ.	Town, Vill	age or City:	Tarrytown		Source	Water Type	e(s): 🔳 Sur	face			
Reporting	g Month/Year:	02/2022 MM/YYYY	Date Repo	ort Submitted	03/2022 MM/777Y				Gro GW Pur	und UDI chase with si chase w/out	subsequent		
				CHU	ORINATION		☐ 4 log treatment required ULTRAVIOLET RADIATION/OTHER TREATMENTS						
			Gas	seous	Liquid Free				1			CAUSTI	
Date	Source(s) in use	Treated water volume	Cylinder weight (LBS.)	Chlorine used/Day	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by (INITIALS)	РН	DAY	
1	DEL	843			8	1.12				SC	7.36	8	
2	DEL	1148			11	1.06				SC	7.41	10	
3	DEL	1815			15	1.12				SC	7.47	16	
4	DEL	606			6	.97				SC	7.39	6	
5	DEL	895			7	1.21				SC	7.69	8	
6	DEL	1661			13	1.14				SC	7.23	15	
7	DEL	790			8	.95				SC	7.29	8	
8	DEL	976			9	1.21				SC	7.71	6	
9	DEL	1636	- 2		13	1.49				SC	7.43	10	
10	DEL	720			6	1.28				SC	7.43	4	
11	DEL	1433		-6	12	1.62				SC	7.42	9	
12	DEL	1086	_		10	1.29			-				
13	DEL	869	-		7	1.23				SC	7.32	7	
14	DEL	1283							_	SC	7.45	8	
15	DEL				11	1.12		-		SC	7.73	12	
		1223			10	1.00				SC	7.27	13	
16	DEL	952			8	1.08				SC	7.33	8	
17	DEL	1172			9	1.13				SC	7.46	10	
18	DEL	1384			10	1.18				SC	7.49	8	
19	DEL	767			5	.90				SC	7.41	7	
20	DEL	1078			11	1.02				SC	7.43	10	
21	DEL	1549			13	.90				SC	7.38	15	
22	DEL	574			5	1.08				SC	7.41	6	
23	DEL	1315			11	1.19				SC	7.35	12	
24	DEL	1186			10	.81				SC	7.53	8	
25	DEL	758			7	.93				SC	7.37	5	
26	DEL	1032			10	1.04				SC	7.47	10	
27	DEL	1457			13	1.07				SC	7.40	13	
28	DEL	621			5	.91				SC	7.39	5	
29	DEL										123.5.5		
30	DEL												
31	DEL			-									
TOTAL		30,828			263							258	
		1,101			9	1.11					7 40	7.0	
AVG		1,101			9	1.1.1					7.43	9	
hlorine M	Mix Ratio = N	A	quarts	/gallons of	NA	% chlo	orine added	to NA		gall	ons of wa	ter in crac	
	uartz sleeve las vation: 🗹 No	- MM	//pb/yy ." date of ac		Date UV lamp repl	мм	guired Trea	atment Resi	dual Level			mg/	
eported i	Stephen	G. Cowles			MM//DD/YY Chie	ef Operato		NYS	DOH Opera	tor NY	/00330		

County:	Westchest	er	Town, Vill	age or City: _	Tarrytown		Source Water Type(s): Surface Ground GWUDI Purchase with subsequent chlorination Purchase w/out subsequent chlorinatio A log treatment required						
	. M . il N	02/2022	D D		03/2022								
seportin	ig Month/Year:	MM/YYYY	Date Repo	ort Submitted	MM/YYYY								
				CHL	ORINATION		U	LTRAVIOLE				NTS	
			Gaseous Liquid Free						La company				
Date	Source(s) in use	Treated water volume (GALLONS/DAY)	Cylinder weight (LBS.)	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by (INITIALS)	NTU	POY	
1	DEL									SC	.80		
2	DEL									SC	.80		
3	DEL									SC	1.04		
4	DEL							1		SC	.94		
5	DEL									SC	1.00		
6	DEL									SC	.90		
7	DEL									SC	.89		
8	DEL									SC	1.02		
9	DEL))							SC	.90	1	
10	DEL									SC	.94	.889	
11	DEL									SC	.91	1	
12	DEL									SC	.91		
13	DEL									SC	.95		
14	DEL									SC	.87		
15	DEL									SC	.95		
16	DEL									SC	.98	-	
17	DEL			†						SC	.90	_	
18	DEL									SC	.92		
19	DEL									SC	.98		
20	DEL									SC	1.00	_	
21	DEL									SC	.98		
22	DEL					-				SC	.86		
23	DEL									SC			
24	DEL							-		SC	1.00	007	
25	DEL									SC	.90 .88	.887	
26	DEL		_									-	
27	DEL					-				SC	.80		
28	DEL							-		SC	.90		
29	DLL									30	.80		
30													
31							_						
00000													
TOTAL		-											
AVG													
lorine	Mix Ratio =	NA	quarts	/gallons of	NA	% chlo	orine added	NA NA		gal	lons of wa	ter in cro	
	quartz sleeve li tivation: N	o Yes If "Yes	ν/σσ/γγ ," date of ac		MM//DD/YY	Re		atment Resi	dual Level		Vanaga	mg	
ported	by: Stephe	n G. Cowles	0	,	Title:	ef Operato		Certi	fication N	imber:	Y00330	15	

Sample Location Date of Sample Number of microbiological monitoring samples required: Number of microbiological monitoring samples required: Number of microbiological monitoring samples taken: Number of microbiological monitoring samples t	wicropiological Samples and Free C		Sample	E-240 - 171	Ozer Addi		Population Served: 12,000		
Marymount 2/2/22 1	Sample Location		Type 1. ROUTINE 2. REPEAT	Positive	MUNICASIOS	Residual		uired:	C
High Tank 2/4/22 1	Marymount	2/2/22				.86	Number of microbiological monitoring samples take	_{en:} 10	
Main St. Firehouse 2/7/22 1	STATE IN THE	2/4/22	1					Yes	V
Doubletree Hotel 2/9/22		2/7/22	4				The state of the s	4	
DPW 2/11/22 1	Doubletree Hotel	2/9/22	1			.47	Did not collect/analyze repeat sample		
Tappan Landing Apts. 2/14/22 1	DPW	2/11/22	- 3			L N=XADE		al coliform	2.5
Warner Library 2/18/22 1	Tappan Landing Apts.	2/14/22					Was triggered source water monitoring required?	Yes	v 1
Warner Library 2/18/22 1	Hackley School	2/16/22	1				Did a MCL violation occur?	Yes	~
Washington Engine Village Hall 2/25/22 1 24 For systems collecting less than 40 samples per month: two or more of the samples (routine and/or repeat) are positive for total coliform (= total coliform MCL violation) For systems collecting 40 or more samples per month: more than 5% of the samples (routine and/or repeat) are positive for total coliform (= total coliform MCL violation). The original sample was E.coli positive and at least 1 repeat sample was positive for total coliform (= E.coli MCL violation). Reminder: System must collect a minimum of five (5) routine microbiological monitoring samples during the month following a repeat sample collection unless waived (to minimum of one sample) in writing by the local health department. Sample of NYSDOH Certified Laboratory. Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO	174	2/18/22	1			Vietnings.		6 for	
Village Hall 2/25/22 1		2/23/22	1			500	For systems collecting less than 40 samples per r		
Great processing collecting 40 or more samples per month: more than 5% of the samples (coutine and/or repeat) are positive for total coliform (= total col	3:35e X 5 X	2/25/22	1		10-81 0-80				E
for total coliform (= total coliform (CL violation). The original sample was E.ofi positive and at least 1 repeat sample was positive for total coliform (= E.ofi MCL violation). Reminder: System must collect a minimum of five (5) routine microbiological monitoring samples during the month following a repeat sample collection unless waived (to minimum of one sample) in writing by the local health department. As required by 5-1.72, "Operation of a Public Water System," a copy of this form shall be sent to your local health department by the 10th calendar day of the next reporting period. Steve Cowles Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO		0 MI 30 WINDE							
Sample collector(s): Steve Cowles Name of NYSDOH Certified Laboratory: Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Make the sample of the source water bypass an existing treatment process in the system? If so, please explain: NO Sample violation occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO			,				for total coliform (= total coliform MCL violation)		
Reminder: System must collect a minimum of five (5) routine microbiological monitoring samples during the month following a repeat sample collection unless waived (to minimum of one sample) in writing by the local health department. As required by 5-1.72, "Operation of a Public Water System," a copy of this form shall be sent to your local health department by the 10th calendar day of the next reporting period. Sample collector(s): Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO							sample was positive for total coliform (= E.coli M		H.S.
microbiological monitoring samples during the month following a repeat sample collection unless waived (to minimum of one sample) in writing by the local health department. As required by 5-1.72, "Operation of a Public Water System," a copy of this form shall be sent to your local health department by the 10th calendar day of the next reporting period. Sample collector(s): Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO							5.	routino	
Sample collector(s): Steve Cowles Name of NYSDOH Certified Laboratory: Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO							microbiological monitoring samples during the mont	th followin	ıg
Steve Cowles Name of NYSDOH Certified Laboratory: Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO								m or one	
Steve Cowles Name of NYSDOH Certified Laboratory: Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO									
Name of NYSDOH Certified Laboratory: Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO									Ai
Name of NYSDOH Certified Laboratory: Westchester County Labs and Research Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO	Stava Co	wloc							
Did any MCL violation occur? If so, please describe: NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO	ample collector(s):		hooto	r Co	- L -	ha and	Danasah		
NO Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain: NO	ame of the both certified Educatory.		neste	Coul	nty La	os and	Research		
Did an emergency or low pressure problem occur? Did source water bypass an existing treatment process in the system? If so, please explain:	CAN	e describe:				7			
NO	10								
NO		10							
NO	d an emergency or low pressure probl-	em occur? [oid source	water bypa	ss an existi	ng treatmer	t process in the system? If so, please explain:		
Comments :						2			
Comments:									
Comments:	<u> </u>								
	mments:								

ublic Wa	ter System Nar	Village of	Tarrytowi	n Water Su	apply		Public	Water Syste	em ID: N	59034	61	
ounty: V	Vestcheste	r	Town, Vill	age or City:	arrytown		Source	Water Type	e(s)- I Sur	face		
	Month/Year: (03/2022		ort Submitted:	04/07/	2022			☐ Gro ☐ GW ■ Pur	und UDI chase with s	ubsequent c subsequent required	
		1		CHLO	RINATION		U!	TRAVIOLE				ITS
			Gas	seous	Liquid	Free			Quartz			CAUST
Date	Source(s) in use	Treated water volume (GALLONS/DAV)	Cylinder weight	Chlorine used/Day	Hypochlorite added to crock (SALLONS OR QUARTS)	chlorine residual at entry point	UV Unit active (YES/NO)	Intensity meter >70%	sleeve cleaned (VES/NO)	Checked by INITIALS	PH	DER
1	DEL	1,170			12	1.07				SC	7.37	13
3	DEL	1,432			13	1.05				SC	7.43	15
4	DEL	6/3			6	199				SC	7,43	5
5	DEL	1,193			10	1.22	-	_		SC	7.46	11
6	DEL	1,088		-	11	1.04				SC	7.50	10
7	DEL	1,456			12	1.18	-			SC	7.49	14
8	DEL	816		-	6	1.15				SC	7.44	7
9	DEL	991		,	7	,43		-		SC	7.32	7
10	DEL	1,677			13	1113				SC	7.52	
11	DEL	397		,		, 85				SC	7.33	3
12	DEL	1741			2	1.00	-			SC	7.45	
13	DEL	1,741			15	196				SC	7.28	14
14	DEL	1.557			13	1.24				SC	7.52	
15	DEL	1,291			10	1.11				SC	7.32	10
16	DEL	196			15	1,00				SC	7.30	2
17	DEL	1855				1.04				SC	7.42	14
18	DEL	. 0			0	187				SC	7.31	0
19	DEL	1,417		-	12	2.19				SC	7.50	12
20	DEL	1,917			16	187				SC	7.42	10
21	DEL	2,454			19	1.61				SC	7.48	18
22	DEL	1,153			9	1.40		-		SC	7.48	11
24	DEL DEL	986			13	1-08				SC	7.61	13
25	DEL	936		-	8	1.22				SC	7.54	ط ط
26	DEL	1,282			11	,90	-		_	SC	7.35	9
27	DEL	1,050			18 -	1,02	-			SC	7.39	
28	DEL	1,126			16	1,06	-			SC	7.30	8
29	DEL	1,115			12	1,05	-			SC	7.35	88
30	DEL	1,110	à.		12	1,08				SC	7.39	5
31	DEL	1,103			10	1,06				SC	7.38	10
OTAL		37,482			334							297
AVG		1,209			11,						7.42	10
	lix Ratio =	,	quarts	/gallons of	NA	% chte	orine added	NA to		Da.	llons of war	
	antz sleeve las	t cleaned:	M/(0.0/YY		Date UV lamp repl	aced:)/DD/YY					
arm activ	vation: 🗸 No	Yes If "Yes	s," date of ac	tivation:	MM//DD/YY	Re	equired Tre	atment Res	idual Level	i		mg
ported b		G. Cowles	1	,	Title: Chi	ef Operato	,	Cert	DOH Opera ification No	ator N umber:	Y003307	75
nature:	XLIA	lu el.	Com	-	-	Date:	14/07	2022	rator Grade	1I	В	

County:			Town Will	- 1								
	Westchester winty: Westchester porting Month/Year: 03/2022		Tarrytown Town, Village or City: Date Report Submitted: 04/2022				Source Water Type(s): Surface Ground GWUDI Purchase with subsequent chlorination Purchase W/out subsequent chlorinatio 4 log treatment required					
		6.6.11			RINATION		JIL.	TRAVIOLE		-	TREATMEN	ITS
			Gas	eous	Liquid	Free			Quartz			
Date	Source(s) in use	Treated water volume	Cylinder weight	Chlorine used/Day	Hypochlorite added to crock (SALLONS OR QUARTS)	chlorine residual at entry point	UV Unit active	Intensity meter >70%	sleeve cleaned (YES/NO)	Checked by (INITIALS)	NTU	poy
1	DEL									SC	,80	3 3 3
2	DEL									SC	,80	
3	DEL									SC	.87	-
4	DEL	-				-	-	-		SC	98,	
5	DEL			-						SC	.88	_
7	DEL									SC	198	
8.	DEL									SC	.00	
9	DEL									SC	,85	
10	DEL									SC	,81	, 882
11	DEL									SC	,81	
12	DEL									SC	,76	ė
13	DEL								-	SC	,80	-
14 15	DEL	-								SC	195	
16	DEL	-		-						SC	184	
17	DEL									SC	1.14	-
18	DEL									SC	1,13	
19	DEL									SC	1.10	
20	DEL									SC	1.10	
.21	DEL	4								SC	1,00	
22	DEL									SC	190	
23 24	DEL			-					_	SC	1,10	,964
25	DEL	-				-			-	SC	1.10	110
26	DEL	1								SC	1,10	-
27	DEL				٠,					SC	,80	
28	DEL									SC	.80	
29	DEL									SC	170	+
30	DEL									SC	.82	-
31	DEL	+								SC	186	
TOTAL						-		_		-		
AVG												
Chlorine N	Nix Ratio =	4	quart	s/gallons of	NA	% chi	orine adder	d to NA		ga	illons of wa	iter în croo
Date UV g	uartz sleeve last	cleaned;	M//DD/YV		Date UV lamp rep	laced:	M//DD/YY					
Alarm acti		Yes If Ye	s." date of a	ctivation:	MM./DD/YV		equired Tre					mg/
Reported b		G. Cowles	1	,	Title: Ch	ief Operato	4/07/2	Cer	SDOH Oper tification N	lumber:	1Y00330 B	75

Microbiological Samples and Free	Chlorine Re	sidual				12,000		
		Sample Type	Total	E. coli Positive	Free Chlorine	Population Served: 12,000	41	0
Sample Location	Date of Sample	L ROUTINE 2 REPEAT 3. TRIGGERED	Positive	Y N	Residual Img/II	Number of microbiological monitoring samples req	1.00	J
MARYMOUNT	3/2/22	. 1			,95	Number of microbiological monitoring samples take	en: 10	
DOUBLETREE	3/4/22				.68	Did a M&R violation occur?	Yes	VIN
VILLAGE HALL	3/7/22		J		,38	If "Yes," check reason (s) below: Actual number of samples is fewer than require	d	
WASHINGTON ENGINE	3/9/22				,23	Did not collect/analyze repeat sample		
MAIN ST. FIREHOUSE	3/11/22	-			.45	Did not collect/analyze for E. coli for positive tot from routine / repeat sample	al coliform	ľ.
WHENER LIBRARY	3/14/22				24	Was triggered source water monitoring required?	Yes	VN
HACKLEY SCHOOL	3/14/22				.61	Did a MCL violation occur?	Yes	VN
DPW	3/18/27				51	If "Yes," check reason(s) below (see also Part 5, Table Additional information).	e 6 for	
HIGH TAWK	3/22/22				,91	For systems collecting less than 40 samples per		
_	3/24/2				168	or more of the samples (routine and/or repeat) a for total coliform (= total coliform MCL violation		2
TAPPAN LANDING	312412				140	For systems collecting 40 or more samples per n than 5% of the samples (routine and/or repeat) for total coliform (= total coliform MCL violation	are positiv	
MAIN BREAK - WASHINGT	w 3/22/2	21.			,53	The original sample was Ecoli positive and at le	east I repe	at
MAIN BRITAK-WASHINGT					,50	sample was positive for total coliform (= E.coli N violation).	ACL	
						Reminder: System must collect a minimum of five (5		
						microbiological monitoring samples during the mon a repeat sample collection unless waived (to minimu		ng
						sample) in writing by the local health department.		
						As required by 5-1.72, "Operation of a Public Water copy of this form shall be sent to your local health of	departmen	
						by the 10th calendar day of the next reporting period	od.	
Sample collector(s): Steve Co	owles							
Name of NYSDOH Certified Laboratory	Westo	heste	er Cou	inty La	bs and	d Research		
Did any MCL violation occur? If so, plea	ase describe:				Ye.			
NO								
	blem occur?	Did source	water byp	ass an exis	ting treatme	nt process in the system? If so, please explain:		
NO								
-								
omments :								
,								

Village of Tarrytown Water Supply

Public Water System Name;

Westchester
County:

Reporting Month/Year:

O4/2022

Date Report Submitted:

O5/2022

Date Report Submitted:

D5/2022

D6/2022

D7/2022

D7/2022

D7/2022

D8/2022

									410	g treatment	required	
				CHL	ORINATION		0)	TRAVIOLET	RADIATIO	N/OTHER	TREATMEN	VTS.
			Gas	seous	Liquid	Free			Dusets			CAUSTI
		Treated water	Cylinder	Chlorine	Hypochlorite	chlorine residual at	UV Unit	Intensity	Quartz sleeve	Checked	PH	SODA
Date	Source(s) in use	volume (GALLONS/DAY)	weight	used/Day	gallons on divaris)	entry point	active (YES/NO)	meter >70%	cleaned (YES/NO)	(INTIIALS)	1 11	DAY
1	DEL	1,100			12	1.07				SC	7.36	10
2	DEL	1,025			10	1.25				SC	7,22	10
3	DEL	1,262			11	1,31				SC	7.73	
4	DEL	1,502			18	1.15				SC	7.79	13
5	DEL	516			9	1.14				SC	7.71	5
6	DEL	1,280			it	1.19				SC	7.34	12
7	DEL	1094			G	1.38				SC	7.47	
8	DEL	1154			12	1.31				SC	7.40	11
9	DEL	1,201				1.86	1			SC	7.44	13
10	DEL	1079		-	13	54				SC	7.31	7
11	DEL	1105				1. 1.1				SC	7.38	13
12	DEL	1989			16	1.79				SC	7,39	10
13	DEL	1,193			10	1,39				SC	7.36	12
14	DEL	1,164			13	1.13				SC	7,71	12
15	DEL	1,031				1,07				SC	7.27	
16	DEL	1144			9	(.11	ł.			SC	7.46	8
17	DEL	1,287			14	1,41	f			SC	7.34	11
18	DEL	1048			10	1,02				SC	7.28	5
19		1657	-		5	,94	+			SC	7.30	5
20	DEL	1,788			15	197	+		-	SC	7.36	14
	DEL		-			1,02				SC	7.31	7
21	DEL	915			13	,90	1			SC	7.31	10
22	DEL	1023			10	,92	+			SC	7.27	9
23	DEL	1,077			13		-		-	SC	7.31	10
	DEL	1,199	-		14	. , 98				SC	7.38	10
25	DEL	1124	-		15	1,10	-			SC	7.31	13
26	DEL	1619			17	1.14				SC	7.22	20
27	DEL	1,937			13	1,21	1			SC	7.31	11
28	DEL	1,316			11	1.19				SC	7.36	11
29	DEL	1,157			13	1.17				SC		13
30	DEL	1,531			1.3	1,12				SC	7,33	15
31	DEL	222.2			7 =0	-				30	-	317
TOTAL		35,713			358	10						
AVG		1,190			12	1,19					7.39	11

Chlorine Mix Ratio = NA	quarts/gallons of	NA	% chlorine added to	NA	gallons of water in	n crock.
Date UV quartz sleeve last cleaned:	MM//DB/VV	Date UV lamp replaced:	MM//DB/YY	3	20	
Alarm activation: V No Yes	If "Yes," date of activation:	MM//DD/W	Required Treatm	nent Residual Level:	,20	mg/L
Reported by: Stephen G. Cow	ries	Title: Chief Op	perator /	NYSDOH Operator Certification Number:	NY0033075	
Signature: Style &	O Corule	Da	ne: 05/06/	22 Operator Grade Level:	1B	

County:	/estcheste Month/Year:	04/2022 MM/YYYY		age or City; ort Submitted:	arrytown 05/202	2	Source	Water Type	Gro GW Pur	und UDI chase with s	ubsequent cl subsequent required	
				CHLO	RINATION		UL	TRAVIOLET	RADIATIO	N/OTHER	TREATMEN	TS
			Gas	seous	Liquid	Free chlorine			Quartz			
Date	Source(s) in use	Treated water volume GALLONS/DAY)	Cylinder weight #65.	Chlorine used/Day	Hypochlorite added to crock sautons de quaets	residual at entry point	UV Unit active (VES/NO)	Intensity meter >70%	cleaned (YES NO	Checked by INITIALS	NTU	POH
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	DEL										98 90 80 80 98 1.50 92 1.72 1.40 1.18 1.10 1.10	,882
21 22 23 24 25 26 27 28 29 30	DEL									SC C C C C C C C C C C C C C C C C C C	1.10	.96
TOTAL		71								_	31.93	
AVG											10	,923
	Mix Ratio = uartz sleeve l	NA ast cleaned:	quar	ts/gallons of	NA Date UV lamp rep		lorine adde	d to		g	allons of wa	iter in cro
	ivation: 🗸 N	lo Yes If "Yes	es," date of a	activation:	MM:/UD/YY	V	M/DD/YV Required Tr	NY	sidual Lev SDOH Ope tification l	erator	ZU NY00330	mg)75

Microbiological Samples and Free	Chlorine Kes					Population Served: 12,000		
Sample Location	Date of Sample	Sample Type ROUTINE 2 REPEAT TRIGGERED	Total Coliform Positive Y N	E. coli Positive Y N	Free Chlorine Residual	Number of microbiological monitoring samples requ	10 10)
	4/4/22	1			, 91	Number of microbiological monitoring samples take	en: 10	
MARYMOUNT HIGH TANK	4/6/22	1	- J		,72	Did a M&R violation occur? If "Yes," check reason (s) below:	Yes	VN
DOUBLE TREE	4/11/22	1			,89	Actual number of samples is fewer than require	d	
	4/13/22	1			_	Did not collect/analyze repeat sample		
WARNER CIBRARY	4/18/22	1			,28	Did not collect/analyze for E. coli for positive tot from routine / repeat sample	al conform	la de la companya de
VILLAGE HALL	4/20/22	1				Was triggered source water monitoring required?	Yes	VN
WASHINGTON ENGINE	4/22/22	1			.53	Did a MCL violation occur?	Yes	VN
DPW C-	4/25/22	1			,34	If "Yes," check reason(s) below (see also Part 5. Table Additional information).	e 6 for	
MAIN ST. FIREHOUSE					-	For systems collecting less than 40 samples per	month: two	o
HALKLEY SCHOOL	4/27/2				P	or more of the samples (routine and/or repeat) for total coliform (= total coliform MCL violation	are positive i).	e
TAPPAN LAMOING	4/29/22	1			,50	For systems collecting 40 or more samples per r than 5% of the samples (routine and/or repeat) for total coliform (= total coliform MCL violation	nonth: mor are positiv	
HIGH TURBIDITY	4/8/22	i.			1.15	The original sample was E.coli positive and at le	east 1 repe	at
HIGH TURBIDITY	4/9/22	t			1.27	sample was positive for total coliform (= E.coli violation).	NCT	
HIGH TURBINATY	4/14/22	1			1,30	Reminder: System must collect a minimum of five (i) routine	
HIGH TURBIDITY	4/15/22	I			1,060	microbiological monitoring samples during the mor a repeat sample collection unless waived (to minim sample) in writing by the local health department.	ith following um of one	ng
MAIN BREAK	4/26/22	1			,97	As required by 5-1.72, "Operation of a Public Wate copy of this form shall be sent to your local health	departmen	
MAIN BRENK	4/27/22	,			,82	by the 10th calendar day of the next reporting peri	od.	
Sample collector(s): Steve C	owles a	N.	CK A	1ALT	ESE			
Name of NYSDOH Certified Laborator	West	chest	er Cou	unty L	abs and	d Research		
Did any MCL violation occur? If so, ple					55			
NO								
-								
Did an emergency or low pressure pr	oblem occur?	Did source	e water by	pass an ex	isting treatme	ent process in the system? If so, please explain:		
NO								
-								
Comments:								

Village of Tarrytown Water Supply

Public Water System Name:

Public Water System ID: NY

5903461

Westchester

Town, Village or City:

Source Water Type(s): - Surface

Reporting Month/Year:

County:

Purchase with subsequent chlorination Purchase w/out subsequent chlomnation 4 log treatment required.

				CHL	DRINATION		U	LTRAVIOLET	RADIATIO	N/OTHER	TREATME	NTS.
			Ga	seous	Liquid	Free			Quartz			CHUSTI
Date	Source(s) in use	Treated water volume SALLONS/DAY:	Cylinder weight	Chlorine used/Day	Hypochlarite added to crock GALLONS OF GLARTS	chlorine residual at entry point	UV Unit active	Intensity meter >70%	sleeve cleaned	Checked by	PH	SOAA VIED PER- DAY
1.	DEL	1,224			15	1.00				SC	7.33	9
2	DEL	1106			19	1.56				SC	7.35	
3	DEL	1,211			. 16	1.27	,			SC	7.36	7
4	DEL	1,282			17	,93				SC	7.35	10
5	DEL	1,182			15	,88				SC	7.31	9
6	DEL	1,350			3	1,07				SC	7.37	(0
7	DEL	46			16	,90				SC	7.33	
8	DEL	1,308			19	1.38				SC	7.38	15
9	DEL	2,022			16	1.11				SC	7.35	
10 11	DEL	1,458		- 1	15	1.46				SC	7.34	14
12	DEL	1,222			12	1,13	1			SC	7.34	9
13	DEL	1,145			11	1.19	1			SC	7.35	9
14	DEL	1.192			12	1.64				SC	7.36	9
15	DEL	1.4/2			13	1.55				SC	7.34	13
16	DEL	1,381			13	1.61				SC	7.33	
17	DEL	1138			12	1.20				SC	7.28	
18	DEL	1,142			13	1,59				SC	7,38	
19	DEL	1,136			11	1.40				SC	7.35	
20	DEL	1.483			16	1.41	1			SC	7.46	15
21	DEL	1,311			16	1,62	-			SC	7.41	14
22	DEL	1,229			13	1,22				SC	7,43	7
23	DEL	1100				1.68	1			SC	7.35	13
24	DEL	1,238			14	1.50				SC	7.37	15
25	DEL	1,590			13	1.14				SC	7.48	13
26 27	DEL	1,433				1,21				SC	7.37	13
28	DEL	124			3	11,24				SC	7.39	2
29	DEL	897	1		5	602,91	1			SC	7.31	5
30	DEL	2033			13584	1,12				SC	7.35	21
31	DEL	1,482	*			1.15				SC	7.50	11
OTAL		38,379			4/9							31
AVG		1,238			14	1.27					7.36	10

NA % chlorine added to gallons of water in crock quarts/gallons of Chlorine Mix Ratio = Date UV lamp replaced: Date UV quartz sleeve last cleaned: Alarm activation: V No Ves If "Yes," date of activation: Required Treatment Residual Level: NYSDOH Operator NY0033075 Chief Operator Certification Number: Operator Grade Level:

Village of Tarrytown Water Supply

Public Water System Name:

Westchester

County:

Town, Village or City:

Reporting Month/Year:

Date Report Submitted:

Date Report Submitted:

OULTURE

Date Report Submitted:

OULTURE

OURTURE

OULTURE

OURTURE

				CHL	DRINATION		UI	TRAVIOLET	RADIATIO	N/OTHER	TREATMEN	VIS
			Gas	seous	Liquid	Free			Quartz			
Date	Source(s) in use	Treated water volume	Cylinder weight	Chlonne used/Day	Hypochlorite added to crock SALLONS OR SLARTS	chlorine residual at entry point	UV Unit active	Intensity meter >70%	sleeve cleaned	Checked by ONITALS	NTU	po
1. 2 3 4 5 6 7 8 9	DEL DEL DEL DEL DEL DEL DEL DEL DEL									\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	1.00	.98
11 12 13 14 15 16 17 18 19 20 21 22 23	DEL DEL DEL DEL DEL DEL DEL DEL										1.10 1.20 1.00 1.00 1.00 1.00 1.00 1.00	. , 94
23 24 25 26 27 28 29 30 31	DEL DEL DEL DEL DEL DEL DEL			Ţ	ės i	-				50 00 00 00 00 00 00 00 00 00 00 00 00 0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
TAL AVG	000	*			-						3084	1.9

AVG				199	
Chlorine Mix Ratio = NA quarts/gallons of	NA	% chlorine added to	IA	gallons of water in	979 n crock
Date UV quartz sleeve last cleaned;	Date UV lamp replaced:	MM DO YY		7.5	
Alarm activation: 🗹 No 🗌 Yes 1f "Yes." date of activation:	NA 25 AA	Required Treatmen	nt Residual Level:	,20	mg/l
Reported by: Stephen G. Cowles	Title: Chief O	perator	NYSDOH Operator Certification Number:	NY0033075	
Signature: Steple of Crub	Da	אופ: אוע סוף אי	Operator Grade Level:	1B	

icropiological Samples and Free	Ciliorine Ne.					12.000		
		Sample Type	Total Coliform	E. coli Positive	Free Chlorine	Population Served:	. 10)
Sample Location	Date of Sample	REPEAT.	Positive Y N	Y N	Residual	Number of microbiological monitoring samples requ	urred:	
	5/2/22	1			,84	Number of microbiological monitoring samples take	10 en:	
MARYMOUNT	5/4/22	1			07	Did a M&R violation occur?	Yes	VN
HIGH TANK	I Van					If "Yes," check reason (s) below:	1	
MAIN ST. FREHOUSE		1				Actual number of samples is lewer than required Did not collect/analyze repeat sample	1	
HACKLEY SCHOOL	5/10/22	1	4		-	Did not collect/analyze for E. coli for positive tot	al colitorm	
VILLAGE HALL	Stiller	1		1	,32	from routine / repeat sample		
DPW	5/14/22				.33	Was triggered source water monitoring required?	Yes	× 1
DOUBLETREE HOTEL	5/16/22	1		V	,27	Did a MCL violation occur?		V
WHAVER LIBRARY	5/20/22	1		V	,32	If "Yes," check reason(s) below (see also Part 5, Tabl Additional information).		
WASHINGTON ENGINE	5/25/22	1			,69	For systems collecting less than 40 samples per or more of the samples (routine and/or repeat)	are positive	Q E
TAPPAN LANDING APTS	5/27/22	- 1			,89	for total coliform (= total coliform MCL violation For systems collecting 40 or more samples per i		re
MAIN BREAK-ACTAMO	VE 5/31/2	ı t			1,49	than 5% of the samples (routine and/or repeat for total coliform (= total coliform MCL violation	are positiv	ve
(1) (1) (1) (1) (1) (1) (1) (1)	AN .		HE			The original sample was E.coli positive and at le	east 1 repe	al
						sample was positive for total coliform (= E.coli violation).	WCL	
					I.	Reminder: System must collect a minimum of five (
						microbiological monitoring samples during the mo a repeat sample collection unless waived (to minim	nth following the contract of	ng
				7	-	sample) in writing by the local health department.		
					-	As required by 5-1.72. "Operation of a Public Wate copy of this form shall be sent to your local health	departmen	a it
			II	JI		by the 10th calendar day of the next reporting per	.00	
Steve C	owles	and	Nick	MAL	TESE			
Name of NYSDOH Certified Laborator	West	chest	er Co	unty L	abs an	d Research		
Did any MCL violation occur? If so, pl	ease describe				***			
NO								
	Ť							
Did an emergency or low pressure pr	oblem occur?	Did sour	ce water by	ypass an ex	kisting treatm	nent process in the system? If so, please explain:		
NO								
Comments:								

For Systems that Treat with Chlorine and/or Ultraviolet Radiation

Public Water System Name: Village	of Tarrytown Water Supply	Public Water System ID: NY 5903461
County: Westchester Reporting Month/Year: 06/202	Town, Village or City: Town, Village or City: Date Report Submitted: 07/2022	Source Water Type(s): Surface ————————————————————————————————————
		 Purchase w/out subsequent chlorination 4 log treatment required

				COL	DINIATION		ULTRAVIOLET RADIATION/OTHER TREATMENTS							
				6.0		DRINATION	Timb	U	DEIMAIDELI RADIAILONATIICA INCAINCE					
Date	Source(s) in use	Treated water volume	Cylinder Weight	Chlorine used/Day	Hypochlorite added to crock	Free chlorine residual at entry point	UV Unit	Intensity meter >70%	Quartz sleeve cleaned	Checked by	PH	CAUSED CHAL. USED PER		
1.	DEL	1,169	1000		17	1.28				SC	7.29	DAY		
21	DEL	1341			73	1,10				SC	7.54	15		
3	DEL	1,509			23	1.47				SC	7.34	17		
4	DEL	1,169			15	,91				SC	7.33	15		
5	DEL	1,409			20	92				SC	7.29	19		
6	DEL	1,384			18	1.06				SC	7.30	18		
7	DEL	1375			22	.90	t l			SC	7.28	17		
8	DEL	1,325			23	,89				SC	7,36	14		
ġ	DEL	1188		1	18	1.01				SC	7.39	12		
10	DEL	1355			17	1.14				SC	7.36	18		
11	DEL	1.433		1	29	1,05				SC	7.31	15		
12	DEL	1214			16	1.11				SC	7.37	14		
13.	DEL	1.449			26	1.07				SC	7.35	16		
14	DEL	1254			24	,90				SC	7.43	15		
15	DEL	1489			25	1,00	1			SC	7.36	23		
16	DEL	1431			24	,96				SC	7.32	18		
17	DEL	1.221			22	1,04	1			SC	7,45	15		
18	DEL	1439			23	,94				SO	7.34	26		
19	DEL	1,210			14	1.08				SC	7.41	18		
20	DEL	1,459			26	,99				SC	7.41	20		
21	DEL	1,192			20	1.04				SC	7,40	16		
22	DEL	1230			23	1,13				SC	7.36	21		
23	DEL	1,230			22	1.10				SC	7.35	15		
24	DEL	1.646			29	1.16				SC	7.42	20		
25	DEL	1,542			24	1.14				SC	7,48	18		
26	DEL	1,425			23	, 90	1			SC	7.42	21		
27	DEL	1395			22	1.22				SC	7.35	14		
28	DEL	1463			12	1,08	1			SC	7.33	13		
29	DEL	1,310			24	1,55				SC	7.36	20		
30	DEL	1,876			29	1.86				SC	7,32	25		
-31-	DEL					3.00				se	1 900.00			
TOTAL		47,252			658							516		
AVG		1,375			22	1.10					7.37	17		
EXPU		101-			00	5.5.4	L.				1			

Chlorine Mix Ratio = NA quarts/gallons of	NA	% chlorine added to N	A	gallons of water	n crock.
Date UV quartz sleeve last cleaned:wx. zom	Date UV lamp replaced:	MM DD YY			
Alarm activation: 🗸 No 🗌 Yes If "Yes," date of activation:	MW CDY	Required Treatmen	t Residual Level:	20	mg/l
Reported by: Stephen G. Cowles	Title: Chief Op	perator	NYSDOH Operator Certification Number:	NY0033075	
Signature: Steple Il. Crub	Da	de: 07/08/22	Operator Grade Level:	1B	

For Systems that Treat with Chlorine and/or Ultraviolet Radiation

blic Water System Name	Village of	Tarrytowr	n Water Si	upply		Public !	Water Syste	m ID: N	59034	51	
County: Westchester			age or City:	Source Water Type(s): Surface Ground GWUDI							
eporting Month/Year:	MM/YSYY	Date Repo	 Purchase with subsequent chlorination Purchase w/out subsequent chlorination 4 (og treatment required 								
			CHL	DRINATION		100	TRAVIOLET	RADIATIO	N/OTHER	TREATMEN	ITS
Source(s)	Treated water volume	Cylinder weight	Chlorine used/Day	Hypochlorite added to crock	Free chlonne residual at entry point	UV Unit active	Intensity meter >70%	Quartz sleeve cleaned (ES No	Checked by	NTU	POE
Date in use GAUCNS.TEAN 1. DEL 2 DEL 3 DEL 4 DEL 5 DEL 6 DEL 7 DEL 8 DEL 9 DEL 10 DEL 11 DEL 12 DEL 13 DEL 14 DEL 15 DEL 15 DEL 16 DEL 17 DEL 16 DEL 17 DEL 18 DEL 17 DEL 18 DEL	GALLONS DAY	285/	1.85	See A See See See See See See See See Se						847 887 885 885 885 885 885 885 885 885 88	1,00
19 DEL 20 DEL 21 DEL 22 DEL 23 DEL 24 DEL 25 DEL 26 DEL 27 DEL 28 DEL 29 DEL 30 DEL 31 DEL				***					\$C \$.81 .75 .78 .79 .74 .83 .97 .85 1.00 1.20	1,01
AVG										,90	
	IA	qua	rts/gallons of	NA	% ch	lorine add	NA ed to		Ç	allons of w	
Date UV quartz sleeve la:		WW. TEYN		Date UV lamp re		MM GO YY	P	630 M		20	200
Alarm activation: V No	Yes If The G. Cowles	Yes." date of	activation:	WW SEW	nef Operat		reatment Re	SDOH Op		NY0033	075

	Date of	Sample Type ROUTINE PROPERT	Total Coliform Positive	E coli Positive	Free Chlorine Residual	Population Served: 12.000 Number of microbiological monitoring samples requ	ired: 10)
Sample Location	Sample	TRISGERED	V N	YN	1,07	Number of microbiological monitoring samples take	_{n:} 10	
Marymount =	4/1/22	1			1	Did a M&R violation occur?	Yes	VIN
WASHINGTON ENGINE	6/3/22	1			,86	If "Yes," check reason (s) below:	12 1163	
MAIN ST. FIREHOUSE	6/4/22	1			,47	Actual number of samples is fewer than required		
DOUBLETREE HOTEL	6/8/22	1		J	,44	Did not collect/analyze repeat sample Did not collect/analyze for E. coli for positive tota	(00) Harry	
DPW	Leliolzz	1			,41	from routine / repeat sample	(content	
Village Han	4/13/22	1			,77	Was triggered source water monitoring required?	Yes	V
HACKLEY SCHOOL	6/15/22	1			,69	Did a MCL violation occur?	Yes	~ N
Warnen Library	6/11/22	1			,45	If "Yes," check reason(s) below (see also Part 5, Table Additional information).	6 tor	
HIGH TANK	6/20/22	1			.30	For systems collecting less than 40 samples per n or more of the samples (routine and/or repeat) as		
TAPPAN LANDING APTI	1/12/22	1			43	for total coliform (= total coliform MCL violation).		
MARYMOUNT	6/2/22	2				For systems collecting 40 or more samples per mithan 5% of the samples (routine and/or repeat) a for total coliform (= total coliform MCL violation).	are positive	
MARYMOUNT DOWNSTAUA	4 6/2/22	1 .	V		1.12	The original sample was E.coli positive and at lea	ast 1 repeat	1
MANYMOUNT UPSTREAM	4/2/22	1	V		1,07	sample was positive for total coliform (= E.coli M violation).	CL	
Mysin BREAK-ALTAMONT	10/1/22	1	V	OV	161	Reminder: System must collect a minimum of five (5)	routine	
MAIN BRUK - 11 11	4/2/22	2				microbiological monitoring samples during the mont a repeat sample collection unless waived (to minimus		g
MANN BREVAK - UPSTREAM		1				sample) in writing by the local health department.		
MAIN BREAK - DOWNSTHEN	0.0	1	V		69	As required by 5-1.72, "Operation of a Public Water S copy of this form shall be sent to your local health de		
1. CILLY SHEAT GOODSINGS	GILDE				1001	by the 10th calendar day of the next reporting period		
Sample collector(s): Steve Co								
Name of NYSDOH Certified Laboratory:	Westo	heste	r Cou	nty La	bs and	l Research		
id any MCL violation occur? If so, plea					39			
NO								
	-							
id an emergency or low pressure prob	lem occur? I	Did source	water bypa	ass an exis	ting treatmen	nt process in the system? If so, please explain:		
OV								

MAIN BREAK POSITIVE SAMPLE WAS 5/31/22, ALL RESAMPLES WELL STAAT OF JUNE,

DOH-360CUV (09/18) Page 2 of 3

SEE ABOVE.

Water System Operation Report For Systems that Treat with Chlorine and/or Ultraviolet Radiation

ublic W	later System Nan	Village of	Tarrytow	n Water S	upply		Public	Water Syste	em ID: N	590346	61	
ounty:	Westchester		Town, Vill	age or City: _	Tarrytown		Source	Water Type	e(s): 🔳 Sur	face		
	og Month/Year: _	7/2022		ort Submitted	08/2022 :- MM/YYYY				Gro GW Pur	und	subsequent	
				CHL	DRINATION		U	TRAVIOLE	RADIATIO	N/OTHER	TREATMEN	VTS
			Gas	seous	Liquid	Free						CAUITI
Date	Source(s) in use	Treated water volume (GALLONS/DAY)	Cylinder weight (LBS.)	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by (INITIALS)	РН	GIALS PER DAY
1	DEL	1,515			35	1.65				SC	7.41	19
2	DEL	1,972			30	1.47				SC	7.30	6
3	DEL	1,445			28	1.91				SC	7.39	13
4	DEL	899			16	2.20				SC	7.44	15
5	DEL	2,132			34	1.90				SC	7.41	9
6	DEL	1,340			22	1.78				SC	7.44	12
7	DEL	2,030			28	1.51				SC	7.24	16
8	DEL	1,414			22	1.88				SC	7.35	10
9	DEL	1,625	-		25	1.41				SC	7.37	2
10	DEL	1,436			19	1.34				SC	7.39	11
11	DEL	1,574		3	18	1.29				SC	7.39	7
12	DEL	1,706		1	28	1.22				SC	7.40	10
13	DEL	2,141			35	1.46				SC	7.49	13
14	DEL	1,868			15	1.33				SC	7.43	15
15	DEL	1,915		-	19	1.30				SC	7.36	19
16	DEL	2,091	-		27	1.71				SC	7.34	11
	DEL				14	1.45	-			SC	7.49	15
17		1,106			31			-		SC		_
18	DEL	2,112				1.39					7.49	11
19	DEL	1,360			22	1.46	-			SC	7.49	10
20	DEL	2,105			29	1.52				SC	7.50	15
21	DEL	1,156		_	16	1.57				SC	7.50	12
22	DEL	2,105		-	25	1.34				SC	7.44	10
23	DEL	1,973			20	2.01				SC	7.49	24
24	DEL	1,499			19	1.88			-	SC	7.50	11
25	DEL	1,729			23	1.73				SC	7.42	16
26	DEL	1,931			27	1:62				SC	7.41	20
27	DEL	1,550			24	1.68				SC	7.48	19
28	DEL	1,847			26	1.44				SC	7.51	16
29	DEL	1,709			29	1.46				SC	7.45	19
30	DEL	2,063			31	1.68				SC	7.41	19
31	DEL	1,160			18	1.68				SC	7.78	21
TOTAL		52,508			755							414
AVG		1,694			24	1.59			1		7.44	13
AVO					COOL			999.			1.414	1,00
	Mix Ratio = N		quart	s/gallons of	NA DVI		orine adde	d to NA		ga	llons of wa	ter in cro
	quartz sleeve las	Yes If "Ye	M//DD/YY	ctivation:	Date UV lamp rep	M	equired Tre	eatment Res	sidual Leve	.20 l:		mg
eporte	Stephen	G. Cowles		20-0	MM//DD/YY Chi Title:	ief Operato	or	NYS Cer	SDOH Oper tification N	ator N umber:	Y00330	75
gnatur	e Step	ale e	l. (al		Date:	MM//DD/YY	Оре	erator Grad	e Level:	В	

Water System Operation Report For Systems that Treat with Chlorine and/or Ultraviolet Radiation

Public Wa	ater System Nar	Village of	Tarrytown	n Water S	upply		Public	Water Syste	m ID: N	590346	51	
ounty:	Westcheste	T)'	Town, Vill	age or City: _	Tarrytown		Source	Water Type				
		07/2022		705 A 200 A	08/2022				☐ Gro			
Reporting	Month/Year: _	MM/YYYY	Date Repo	ort Submitted	MM/YYYY				Pur	chase with si		
		1910900000			move usine s					chase w/out		hlorinatio
		i	r	CHI	ORINATION		00	TRAVIOLET	- FF - Y- VENT	ON/OTHER	er fematore	TC
			Gar	seous	Liquid	Free	UI.	INAVIOLE	KADIATI	NYOTHER	NEMINEN	13
		AND AND AND THE THE PERSONS OF				chlorine	Transpersor.		Quartz	ret of the Li		
Date	Source(s) in use	Treated water volume (GALLONS/DAY)	Cylinder weight (LBS.)	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	sleeve cleaned (YES/NO)	Checked by (INITIALS)		
1	DEL									SC	1.20	
2	DEL									SC	1.00	
3	DEL									SC	1.20	
4	DEL									SC	.90	
5	DEL									SC	1.00	
6	DEL									SC	.90	
7	DEL									SC	.78	
8	DEL									SC	.97	
9	DEL									SC	.88	
10	DEL									SC	1.00	
11	DEL			i i						SC	1.30	
0.000				- 22						SC	.91	
12	DEL									SC	.93	
13	DEL											.894
14	DEL									SC	.85	.094
15	DEL									SC	.83	
16	DEL									SC	.84	
17	DEL									SC	.89	
18	DEL									SC	.88	
19	DEL									SC	.83	
20	DEL									SC	1.01	
21	DEL									SC	.90	
22	DEL									SC	1.04	
23	DEL									SC	1.04	
24	DEL									SC	.95	
25	DEL									SC	1.15	
26	DEL					2				SC	.92	
27	DEL									SC	1.04	
28	DEL				1.00					SC	.72	.963
29	DEL									SC	.80	
30	DEL									SC	.95	
31	DEL									SC	.79	
TOTAL		T 11		9							29.40	1.857
AVG											.95	.928
277.4		NA.		-	NA			NA				
hlorine	Mix Ratio =	YA.	quart	ts/gallons of		% chl	orine adde	d to		ga	llons of wa	ter in cro
ate UV	quartz sleeve la	st cleaned:	MM//DD/YY	_	Date UV lamp rep	laced:	M//DD/YY	_		00		
larm act	tivation: 🗹 No	Yes If "Ye	s," date of a	ctivation: _	MM//DD/YY	R	lequired Tre	eatment Re	sidual Leve	.20 el:		mg,
8	Stepher	n G. Cowles	_			ief Operato	or	NY: Cer	SDOH Ope tification N	rator N lumber:	Y00330	75
eported	- 1.											

Microbiological Samples and Free	Chlorine R	esidual				12,000			
Complete Landing	Date of Sample	Sample Type 1. ROUTINE 2. REPEAT	Total Coliform Positive	E. coli Positive Y N	Free Chlorine Residual	Population Served: 12,000 Number of microbiological monitoring samples requ	uired:	0	
Sample Location	7/5/22	3. TRIGGERED	Y N	Y N	1.09	Number of microbiological monitoring samples take	_{en:} 10		
Marymount	7/7/22	201			.39	Did a M&R violation occur?	Yes	✓ N	
High Tank		1	1 - 10 2 - 10			If "Yes," check reason (s) below:			
Warner Library	7/11/22	1			.23	Actual number of samples is fewer than required Did not collect/analyze repeat sample	1		
Hackley School	7/13/22	1			.57	Did not collect/analyze repeat sample Did not collect/analyze for E. coli for positive total	al coliform	Ě	
Tappan Landing	7/15/22	1			.55	from routine / repeat sample	March 1		
Village Hall	7/18/22	1			.61	Was triggered source water monitoring required?	Yes	VN	
Washington Engine	7/20/22	1			.41	Did a MCL violation occur?	Yes	✓ N	
Main St. Firehouse	7/22/22	1			.72	If "Yes," check reason(s) below (see also Part 5, Table Additional information).	: 6 for		
Doubletree Hotel	7/25/22	1			.40	For systems collecting less than 40 samples per r or more of the samples (routine and/or repeat) a			
DPW	7/27/22	1			.67	for total coliform (= total coliform MCL violation)).		
14:						For systems collecting 40 or more samples per m than 5% of the samples (routine and/or repeat)	are positiv		
		ā				for total coliform (= total coliform MCL violation) The original sample was E.coli positive and at lea			
						sample was positive for total coliform (= E.coli M violation).	CL		
						Reminder: System must collect a minimum of five (5)	routine		
						microbiological monitoring samples during the mont a repeat sample collection unless waived (to minimu	th followir	ng	
						sample) in writing by the local health department.			
-						As required by 5-1.72, "Operation of a Public Water copy of this form shall be sent to your local health d			
						by the 10th calendar day of the next reporting perio		•	
Steve Co	MAS &	Nick	Malte	20					
Sample collector(s):	V-07-07-1			45 50 5	he and	d Research			
Name of NYSDOH Certified Laboratory:			1 Oou	iity Lo	ibs aric	Tresearch			
Did any MCL violation occur? If so, plea	se describe:				701				
NO						6			
	S								
Did an emergency or low pressure prob	lem occur?	Did source	water bypa	ass an exist	ting treatme	nt process in the system? If so, please explain:			
NO									
AND THE RESERVE OF TH									
Comments:									
¥									

Water System Operation Report

Operator Grade Level:

09/09/20

MM//DD/YY

Date:

Public Wa	ter System Nam	Village of	Tarrytown	ii vvalei S	ирріу		Public	Water Syste	em ID: N	590346	01.	
County:	Vestchester	7	Town, Vill	age or City:	Tarrytown		Source	Water Type	e(s): 🔳 Sur	face		
		8/2022			09/2022			31	☐ Gro	und		
Reporting	Month/Year:	MM/YYYY	Date Repo	ort Submitted	: MM/YYYY	-			Pur Pur	chase with s chase w/out	subsequen	
				CHI	ORINATION		100	TRAVIOLE		g treatment ON/OTHER	Carried Con-	NITC
			Gae	seous	Liquid	Free	U	INAVIOLE	NADIATIO	DIVOTREK	INCALME	CAUSTIC
Date	Source(s) in use	Treated water volume (GALLONS/DAY)	Cylinder weight	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/t)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by (INITIALS)	Р Н	Sona Brats. Using Dray
11	DEL	1,354			24	1.32				SC	7.43	33
2	DEL	2,062			36	1.65				SC	7.55	37
3	DEL	1,521			21	.93				SC	7.63	14
4	DEL	2,072			30	1.11				SC	7.61	16
5	DEL	2,023			32	1.16				SC	7.60	17
6	DEL	1,299			19	.99				SC	7.55	11
7	DEL	2,086			22	1.21				SC	7.67	16
8	DEL	2,085			28	1.87				SC	7.55	15
9	DEL	2,114	7		26	1.91				SC	7.52	18
10	DEL	1,518			20	1.50				SC	7.58	13
11	DEL	2,154			28	1.10				SC	7.56	18
12	DEL	1,853			30	1.54				SC	7.67	16
13	DEL	1,621			22	1.58				SC	7.72	16
14	DEL	2,052			34	1.47				SC	7.53	19
15	DEL	1,492			23	1.44				SC	7.59	12
16	DEL	1,753			24	1.51	_			SC	7.56	15
17	DEL	2,098			33	1.44				SC	7.58	20
18	DEL	1,999			28	1.29			-	SC	7.55	17
19	DEL	1,938			29	1.31				SC	7.57	18
20	DEL	1,280			24	1.16			-	SC	7.60	12
21	DEL	1,967		_	30	1.52				SC	7.64	19
22	DEL	1,115			17	1.34				SC	7.63	9
23	DEL	1,929			22	1.31				SC	7.56	17
24	DEL	1,300			19	.98			_			11
25	DEL									SC	7.65 7.65	
26	DEL	1,936 1,926			28 27	1.11				SC	7.64	19
27	DEL	1,352			22	1.92						18
28	DEL	1,923			30	1.31				SC	7.69	11
29	DEL	1,913			29	1.56				SC	7.53 7.60	18
30	DEL	1,720			27	1.59				SC	7.64	17
31	DEL	1,412			24	1.88				SC		13
TOTAL	DEL	54,865			809	1.00				SC	7.49	12 478
AVG		1,770			26	1.39					7.59	15
	N.				NA 20	1.00		NA			7.00	10
	nix Ratio =	t cleaned:	quart:	s/gallons of	Date UV lamp rep	laced:	orine added	i to		gal	lons of wa	iter in cro
larm acti	vation: 🗹 No	Yes If "Yes	s," date of a	tivation: _	MM//DD/YY	R	equired Tre	atment Res	idual Leve	.20		mg,

Water System Operation Report For Systems that Treat with Chlorine and/or Ultraviolet Radiation

ublic Wa	ter System Nan	Village of	Tarrytow	n Water S	Supply		Public	Water Syste	em ID: N	59034	61	
ounty:	Vestcheste		Town Vill	age or City:	Tarrytown			Water Type				
	Month/Year:	08/2022 MM/YYYY		ort Submitte	99/2022 MM/YYYY		Source	, ruter yyp.	☐ Gro ☐ GW ☐ Pur ☐ Pur	und	subsequent	
				CHI	ORINATION		T U	LTRAVIOLE				VTS.
			Gas	eous	Liquid	Free			10.000	, in a series	THEFT	1
Date	Source(s) in use	Treated water volume	Cylinder weight (LBS.)	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by (INITIALS)	NTU	poq
1	DEL									SC	1.0	
2	DEL									SC	.76	
3	DEL									SC	1.2	
4	DEL									SC	1.7	
5	DEL									SC	1.0	
6	DEL									SC	.90	
7	DEL				1					SC	1.0	
8	DEL									SC	1.3	
9	DEL			-						SC	.95	1
10	DEL									SC	1.10	
11	DEL			4.	1					SC	.87	.864
12	DEL			1						SC	1.0	.00-
13	DEL									SC	.90	
14	DEL				+	-				SC	.82	_
15	DEL			-						SC	.80	-
-						-						
16	DEL			-		-				SC	.90	
17	DEL					-				SC	.90	
18	DEL									SC	.87	1
19	DEL									SC	.81	
20	DEL									SC	.91	
21	DEL									SC	.76	
22	DEL									SC	.77	
23	DEL									SC	.69	
- 24	DEL									SC	.94	1
25	DEL									SC	.87	.889
26	DEL					1	-			SC	.92	
27	DEL									SC	.85	
28	DEL					->				SC	.95	
29	DEL									SC	.82	
30	DEL						(SC	.85	
31	DEL				-					SC	.77	
TOTAL											28.88	1.75
AVG											.93	.876
ate UV c	Mix Ratio = Nuartz sleeve las		quart M//DD/YY s," date of a	s/gallons of	Date UV lamp rep	laced:	orine adde	eatment Res		.20	llons of wa	ater in cro
ported	Stephen	G. Cowles		1	Title:	ef Operato	J. 1 . 1 . 2	NY: Cer	DOH Oper ification N	umber:	Y00330	75
nature	La	she el		ral	_	Date:	/09/20 MM//DD/YY	Оре	rator Grad	e Level:	В	

		Sample Type	Total Coliform	E. coli Positive	Free Chlorine	Population Served: 12,000	. 1	0
Sample Location	Date of Sample	1. ROUTINE 2. REPEAT 3. TRIGGERED	Positive Y N	Y N	Residual (mg/l)	Number of microbiological monitoring samples requ	uired:	U
Marymount	8/1/22	1			1.13	Number of microbiological monitoring samples take	_{en:} 10	
Hackley School	8/3/22	1			.68	Did a M&R violation occur?	Yes	∠ N
Main St. Firehouse	8/5/22	1			.00	If "Yes," check reason (s) below:		
	SISS PACE	61	A	709 - 909 - AV	(22/10)	☐ Actual number of samples is fewer than required ☐ Did not collect/analyze repeat sample	E	
High Tank	8/8/22	1			.61	Did not collect/analyze for E. coli for positive total	al coliforn	n
Warner Library	8/10/22	1			.42	from routine / repeat sample		
Main St. Firehouse	8/12/22	1			.71	Was triggered source water monitoring required?	Yes	✓ No
Washington Engine	8/16/22	1			.21	Did a MCL violation occur?	Yes	✓ No
Village Hall	8/19/22	1			.24	If "Yes," check reason(s) below (see also Part 5, Table Additional information).	6 for	
Doubletree Hotel	8/23/22	1			.73	For systems collecting less than 40 samples per or more of the samples (routine and/or repeat) a		
Tappan Landing Apts.	8/25/22	1			.41	for total coliform (= total coliform MCL violation)).	
DPW	8/29/22	1			.53	For systems collecting 40 or more samples per m than 5% of the samples (routine and/or repeat)	are positi	
						for total coliform (= total coliform MCL violation) The original sample was E.coli positive and at lea		at
						sample was positive for total coliform (= E.coli N violation).		
			пп	пп			CLESSFEE	
						Reminder: System must collect a minimum of five (5) microbiological monitoring samples during the mon	th followi	
						a repeat sample collection unless waived (to minimu sample) in writing by the local health department.	ım of one	
				ШШ		As required by 5-1.72, "Operation of a Public Water	System."	a
						copy of this form shall be sent to your local health d by the 10th calendar day of the next reporting perio	lepartmen	
						by the 10th catendar day of the next reporting perio	u.	
ample collector(s): Steve Cov	wles &	Nick	Malte	se				
lame of NYSDOH Certified Laboratory:	West	cheste	r Cou	nty La	ıbs and	d Research		
oid any MCL violation occur? If so, plea	se describe:				VG1 * *			
NO					P			
	12					10		
id an emergency or low pressure prob	lem occur?	Did source	water bypa	ass an exist	ting treatme	nt process in the system? If so, please explain:		
NO								

8/5 Main St. Firehouse was sampled but I forgot to add the CL2 residual, I was told days later when I brought the next sample in to the Westchester County Lab that they didn't run it because of that. So I had to take it again at a later date 8/12. I had the WC lab send me a notification so DOH can see it. Lab states that they tried to call me but I never received a call or voicemail from the lab about the non CL2 reading. I would have told them on the phone what it was.

For Systems that Treat with	Chlorine and	or Ultraviolet	Radiation
	and the same of th		

Public V	later System N	Village of ame:	Tarrytow	n Water S	upply		Public	Water Syste	m ID: N	59034	61	
County:	Westchest	er	Town, Vill	age or City:	Tarrytown		Source	Water Type				
		09/2022			10/2022				☐ Gro			
Reportir	ng Month/Year:	MM/YYYY	Date Repo	ort Submitted	MM/YYYY	-			Pur Pur	chase with s	subsequent	chlorination t chlorination
				CHL	ORINATION		U	LTRAVIOLE	RADIATIO	N/OTHER	TREATMEN	NTS
			Gas	seous	Liquid	Free						CAUSTI
Date	Source(s)	Treated water volume	Cylinder weight	Chlorine used/Day	Hypochlorite added to crock	chlorine residual at entry point	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by	Р Н	USETO CALS.
	W 1975	Cran-cora	(LBS.)	((85.)	200000000000000000000000000000000000000	(mg/l)	(1E5/NO)	-70.70	(TES/NO)		7.04	DAY
1	DEL	1,880			26	1.60				SC	7.61	24
2	DEL	1,586			21	1.68				SC	7.72	22
3	DEL	1,569			21	1.74				SC	7.56	20
4	DEL	1,766			25	1.62				SC	7.65	19
5	DEL	1,328			18	1.70				SC	7.58	12
6	DEL	1,209			16	1.61				SC	7.68	19
7	DEL	1,537			20	1.60				SC	7.48	19
8	DEL	986			12	1.56				SC	7.66	9
9	DEL	1,826			24	1.60				SC	7.68	24
10	DEL	1,180			14	1.56				SC	7.58	21
11	DEL	1,320			16	1.62				SC	7.71	24
12	DEL	1,519			18	1.60				SC	7.59	15
13	DEL	1,254			13	1.41				SC	7.58	22
14	DEL	1,036			12	1.60				SC	7.72	19
15	DEL	1,783			21	1.40				SC	7.56	22
16	DEL	1,158			14	1.11				SC	7.60	16
17	DEL	1,398			15	1.38				SC	7.64	22
18	DEL	1,523			15	1.28				SC	7.49	23
19	DEL	1,139			14	1.35				SC	7.56	19
20	DEL	1,799			25	1.42				SC	7.66	24
21	DEL	1,179			15	1.28				SC	7.54	18
22	DEL	1,243			13	1.59				SC	7.57	16
23	DEL	1,513			22	1.56				SC	7.53	17
24	DEL	1,200			18	1.41				SC	7.66	16
25	DEL	1,035			14	1.44				SC	7.62	12
26	DEL	1,651			19	.1.5		-		SC	7.57	24
27	DEL	1,201			14	- 1.20		-		SC	7.57	
28	DEL	1,070			13	-1.68				SC	7.67	13
29	DEL				18	1.38				SC		
30	DEL	1,794			14					SC	7.57	22 14
		1,269		-	14	1.56				30	7.68	14
31	DEL	44.654			505							
TOTAL		41,951		_	520							563
AVG		1,398			17	1.50					7.61	19
	Mix Ratio = quartz sleeve	NA last cleaned:	quart	s/gallons of	NA Date UV lamp rep	laced:	orine adde	d to_NA		ga	llons of wa	ater in croc
Alarm a	ctivation: 🗹 N	lo 🗌 Yes If "Ye		ctivation: _	MM//DD/YY			eatment Re	idual Leve	.20 l:		mg/
Reporte	Stephe	en G. Cowles	, ,	7		ef Operato	or	NY: Cer	DOH Oper tification N	rator Number:	IY00330	175
Signatuı	e. Xu	ph e	l. 6	rule	_	Date:	0/06/22 MM//DD/YY	Оре	erator Grad	e Level:	В	

Water System Operation Report For Systems that Treat with Chlorine and/or Ultraviolet Radiation

	Vater System Nar Westcheste		Town, Vill	age or City: _	Tarrytown			Water Syste	e(s): 🔳 Sur	face		
	g Month/Year: _	09/2022		ort Submitted	: 10/2022 MM/YYYY				☐ Gro ☐ GW ☐ Pur ☐ Pur	und IUDI chase with s	subsequent ch subsequent required	
		1.7		CHI	ORINATION		U	TRAVIOLE		Contract of the second	TREATMEN	TS
			Gas	seous	Liquid	Free				1.,, 0.3.1.2.3	1.02.03.04.0	
Date	Source(s) in use	Treated water volume	Cylinder weight (LBS.)	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by (INITIALS)	NTU	PUH
(1	DEL									SC	.80	
2	DEL									SC	.70	
3	DEL									SC	.70	
4	DEL					1				SC	.90	
5	DEL									SC	.91	
6	DEL									SC	.70	
7	DEL									SC	.70	
8	DEL									SC	.70	.899
9	DEL									SC	.60	
10	DEL									SC	.80	
11	DEL			V		(-				SC	.60	
12	DEL									SC	.70	
13	DEL									SC	.60	
14	DEL									SC	.95	
15	DEL									SC	.68	
16	DEL									SC	.61	
17	DEL									SC	.64	
18	DEL									SC	.79	
19	DEL									SC	.76	
20	DEL									SC	.63	
21	DEL									SC	.57	
22	DEL									SC	.59	.867
23	DEL									SC	.93	.007
24	DEL	-								SC	.92	
25	DEL	-				-			-	SC	.63	
26	DEL	+		-		2				SC	1.10	
27	DEL	+						-		SC	1.00	
28	DEL	+			-			-		SC	.61	_
29	DEL	+		1				-		SC	.71	
30	DEL	+				-				SC	.68	
31	DEL	+					-	-		30	.00	
-			-								22.21	1.70
TOTAL		1		-			-	-			22.21	1.76
AVG											.74	.883
Date UV	Mix Ratio = quartz sleeve la	, M	MM//DD/YY	s/gallons of	NA Date UV lamp rep	laced:	orine adde	3		20	allons of wa	
Alarm ac	Stanhar	Yes If "Ye n G. Cowles	s," date of a	ctivation: _	MM//DD/YY Ch	Fi ief Operato		eatment Res	sidual Leve SDOH Ope tification N	rator N	NY00330	mg 75
Signatur	0	le d.	(ml	inte:		D/06/22		erator Grac	1	В	

Microbiological Samples and Free (Chlorine Re				I	Booulation Sanual, 12,000
Sample Location	Date of Sample	Sample Type 1. ROUTINE 2. REPEAT 3. TRIGGERED	Total Coliform Positive Y N	E. coli Positive Y N	Free Chlorine Residual	Number of microbiological monitoring samples required:
Marymount	9/1/22	1			1.52	Number of microbiological monitoring samples taken: 10
High Tank	9/6/22	1			1.01	Did a M&R violation occur?
Warner Library	9/9/22	1			.40	If "Yes," check reason (s) below: Actual number of samples is fewer than required
Hackley School	9/12/22	1			.83	Did not collect/analyze repeat sample
Village Hall	9/14/22	1			.64	Did not collect/analyze for E. coli for positive total coliform from routine / repeat sample
Main St. Firehouse	9/17/22	1			.45	Was triggered source water monitoring required? ☐ Yes ✓
Washington Engine	9/20/22	1			.59	Did a MCL violation occur?
Tappan Landing	9/23/22	1			1.02	If "Yes," check reason(s) below (see also Part 5, Table 6 for Additional information).
Tappan Landing - Resample		1			1.18	For systems collecting less than 40 samples per month: two
Tappan Landing - Downstream		4			1.01	or more of the samples (routine and/or repeat) are positive for total coliform (= total coliform MCL violation).
Tappan Landing - Upstream	9/24/22	1			1.22	For systems collecting 40 or more samples per month: more than 5% of the samples (routine and/or repeat) are positive
Doubletree Hotel	9/27/22	1 .	7		.23	for total coliform (= total coliform MCL violation). The original sample was E.coli positive and at least 1 repeat
Doubletree Hotel - Resample	9/28/22	1			.82	sample was positive for total coliform (= E.coli MCL violation).
Doubletree Hotel - Downstream	9/28/22	1			.79	Reminder: System must collect a minimum of five (5) routine
Doubletree Hotel - Upstream	9/28/22	1			.94	microbiological monitoring samples during the month following a repeat sample collection unless waived (to minimum of one
DPW	9/29/22	1			.45	sample) in writing by the local health department.
						As required by 5-1.72, "Operation of a Public Water System," a copy of this form shall be sent to your local health department
						by the 10th calendar day of the next reporting period.
Steve Co	wles 8	l Nick	Malte	256	ļ	1.
sample collector(s):	EME	12	217000-1200-121	25 2	hs and	d Research
Name of NYSDOH Certified Laboratory:			1 000	iity La	. Co	Trescaron
oid any MCL violation occur? If so, pleas	se describe:				f	
NO						e
	14					
olid an emergency or low pressure prob	lem occur?	Did source	water bypa	ass an exist	ing treatme	nt process in the system? If so, please explain:
NO						
omments :						34
FLIMOVIMENO						
ğ						

Public W	later System N	Village of	Tarrytow	n Water Si	upply		Public	Water Syste	em ID: N	590340	61	
County:	Westchest		Town, Vill	lage or City:	Tarrytown			Water Type				
Reportir	ng Month/Year:	10/2022 MM, YYYY	Date Repo	ort Submitted	11/2022 www.yyyy				■ Pur Pur	ound AUDI rchase with s rchase w/out og treatment	subsequent	
				CHIC	RINATION		11	TRAVIOLE		ON/OTHER		TS
			Ga	seous	Liquad	Free			, , , , , , , , , , , , , , , , , , , ,		1112111111211	(4)
	Source(s)	Treated water volume	Cylinder weight	Chlorine used/Day	Hypochlorite added to crock	chlorine residual at entry point	UV Unit	Intensity meter	Quartz sleeve cleaned	Checked by		
Date	in use	[6ALE 0765/(0891)	(LES.)	(北田公)	(SALLONS OR QUARTS)	ingti	(VES-NO)	>70%	:09:S/MOV	ONITIALSE		
1	DEL	995			16	1.34				SC	7.59	12
2	DEL	1,207			22	1.62				SC	7.64	13
3	DEL	1,575			26	1.50				SC	7.61	17
4	DEL	957			16	1.23				SC	7.50	9
5	DEL	1,175			18	1.75				SC	7.66	12
6	DEL	1,216			20	1.76			2	SC	7.60	6
7	DEL	1,237			19	1.79				SC	7.60	12
8	DEL	1,245			21	1.30				SC	7.55	13
9	DEL	1,266		*	23	1.79				SC	7.47	7
10	DEL	1,217			20	1.80				SC	7.66	13
11	DEL	1,349			16	1.01				SC	7.53	10
12	DEL	1,103			17	1.75				SC	7.53	13
13	DEL	1.410			23	1.29				SC	7.57	12
14	DEL	1,110			16	1.87				SC	7.52	6
15	DEL	1,322			19	1.75				SC	7.53	10
16	DEL	1.354			15	1.34				SC	7.49	13
17	DEL	1,145			20	1.50				SC	7.49	11
18	DEL	1,104			16	1.76				SC	7.55	11
19	DEL	1,529			22	1.62				SC	7.50	16
20	DEL	1,434			22	1.26				SC	7.47	16
21	DEL	1,088			14	1.69				SC	7.49	13
22	DEL	1.269			16	1.72				SC	7.60	12
23	DEL	1,538			20	1.50				SC	7.54	14
24	DEL	1,126			16	1.44				SC	7.46	7
25	DEL	1,272			17	1.57				SC	7.43	11
26	DEL	1,105			14	1.54				SC	7.44	10
27	DEL	1.315		*	20	1.68				SC	7.53	13
28	DEL	1,119			15	1.70		-	*	SC	7.67	10
29	DEL	1.746			21	1.76				SC	7.67	15
30	DEL	1.023			17	1.50				ŚC	7.45	5
31	DEL	1.313	*		20	1.64			+-	SC	7.44	13
TOTAL		38,867		1 2	579							357
10000000		1,254			19	1.59	-				754	
AVG		1,204			19	1.09					7.54	12
	Mix Ratio = quartz sleeve l	NA ast cleaned:	quart	s/gallons of	NA Date UV lamp rep	laced:	orine adde	d to NA		ga	llons of wa	ter in crock
Alarm aç	tivation: 🗸 N	o Yes If "Ye	s." date of a	ctivation:	MM_ED_YY	R	equired Tre	atment Res	sidual Leve	.20		mg/l
Reported	stephe	en G. Cowles	\bigcirc	Λ	Title: Chi	ef Operato			SDOH Oper tification N	rator N lumber:	Y00330	75
Signatur	e: Sle	plu el.	Cor	ulı—	<u>-</u>	Date:	/09/20 MMUDELYY	Оре	erator Grad	le Level:	В	

Water System Operation Report

Public Wa	ater System Na	Village of me:	Tarrytow	n Water S	upply		Public	Water Syste	em ID: N	59034	61	
	Westcheste		Town, Vill	lage or City:	Tarrytown			Water Type				
		10/2022			11/2022				☐ Gro	und		
Reporting	g Month/Year:	MM/YYYY	Date Repo	ort Submitted	: MM/YYYY	_			☐ GW	chase with s	ubsequent o	hlorination
		MMCITTI			MMUTTT				Pur	chase w/out	subsequent	
					DRINATION		U	LTRAVIOLE		-		VTS
			Gas	seous	Líquid	Free chlorine			Quartz			
Date	Source(s) in use	Treated water volume (GALLONS/DAY)	Cylinder weight (LBS.)	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	residual at entry point	UV Unit active (YES/NO)	Intensity meter >70%	sleeve cleaned (YES/NO)	Checked by	NTU	P04
1	DEL									SC	.53	
2	DEL									SC	.54	
3	DEL									SC	.63	
4	DEL									SC	.50	
5	DEL									SC	.64	
6	DEL									SC	.51	.874
7	DEL									SC	.49	.51.4
8	DEL									SC	.51	
9	DEL	-								SC	.54	
10	DEL									SC	.61	
11	DEL									SC	.53	
12	DEL				7					SC	.73	
13	DEL									SC	.58	
14	DEL									SC	.63	
15	DEL									SC	.60	
16	DEL									SC	.62	
17	DEL				1					SC	.68	
18	DEL									SC	.62	
19	DEL									SC	.58	
20	DEL									SC	.61	.871
21	DEL									SC	.64	.07 1
22	DEL									SC	.63	
23	DEL									SC	.59	
24	DEL									SC	.67	
25	DEL									SC	.57	
26	DEL					3				SC	.59	
27	DEL									SC	.60	
28	DEL				٧.					SC	.73	
29	DEL									SC	.80	
30	DEL									SC	.70	
31	DEL									SC	.62	
TOTAL											18.82	1.745
AVG		*									.61	.872
		NA .		voision in	NA	- 10.5 17	74.	NA				
	Mix Ratio =	at also and	quart	s/gallons of	Bear DVII		orine adde	d to		ga	llons of wa	ter in croc
		- "	M//DD/YY		Date UV lamp repl	aceo:	M//DD/YY					
larm acti	ivation: 🗹 No	Yes If "Yes	s," date of a	ctivation:	MM//DD/YY	R	equired Tre	atment Res	idual Leve	:		mg/
eported	by: Stepher	G. Cowles	1	7 1	Title:	ef Operato	or		DOH Oper ification N		Y00330	75
Alarm acti Reported Signature	by: - 2		s," date of ac	stivation:	Chi	ef Operato		NYS Cert	DOH Oper	ator N umber:	77727	30

	Date of	Sample Type 1 ROUTINE 2 REPENT	Total Coliform Positive	E. coli Positive	Free Chlorine Residual	Population Served: 12,000 Number of microbiological monitoring samples requ	uired:	0		
Sample Location	Sample	h PREGGEREED		Y N	(mg/l)	Number of microbiological monitoring samples take	10			
Marymount	10/3/22	1			1.29	Alternative relative receiver # special relative		-		
High Tank	10/5/22	1		1	.25	Did a M&R violation occur? If "Yes," check reason (s) below:	Yes	V 1		
Warner Library	10/7/22	1			.55	Actual number of samples is fewer than requires	d			
Hackley School	10/11/22	1			.39	Did not collect/analyze repeat sample Did not collect/analyze for E. coli for positive tot.	al coliform	n		
Main St. Firehouse	10/14/22	1			.71	from routine / repeat sample	at Coulotin	8		
Tappan Landing Apts.	10 17 22	1			.83	Was triggered source water monitoring required?	Yes	2		
Washington Engine	10 19 22	1			.77	Did a MCL violation occur?	Yes	V		
Village Hall	10:21:22	1			.83	If "Yes," check reason(s) below (see also Part 5, Table Additional information).	6 for			
Doubletree	10/25/22	1			.79	For systems collecting less than 40 samples per				
DPW	10/27/22	1			.68	or more of the samples (routine and/or repeat) a for total coliform (= total coliform MCL violation	1			
3						For systems collecting 40 or more samples per month: more than 5% of the samples (routine and/or repeat) are positive for total coliform (= total coliform MCL violation). The original sample was E.coli positive and at least 1 repeat sample was positive for total coliform (= E.coli MCL violation).				
DPW	10/28/22	1.			.70					
DPW - Senior Center upstream	10/29/22	1			.48					
DPW - Downstream Hydrant		1			.62	evolution).				
*					2.5.51	microbiological monitoring samples during the mon a repeat sample collection unless waived (to minimu	th followin	owing		
						sample) in writing by the local health department.	HII OI OHE			
						As required by 5-1.72, "Operation of a Public Water				
						copy of this form shall be sent to your local health d by the 10th calendar day of the next reporting perio		t		
C+ C	0	ME . I.	N A - 18							
Sample collector(s): Steve Cov						15				
Name of NYSDOH Certified Laboratory:	vvesto	neste	r Cou	nty La	ibs and	I Research				
old any MCL violation occur? If so, pleas	se describe:				*					
NO										
	SE									
Did on amargage at law assessment	non name of	Did on			San toron	nt process in the system? If so, please explain:				
NO	iem occur:	nia source	water trypa	122 all exist	ang treatmer	nt process in the system? If so, please explain:				
NO										
Comments :										

County:	Westcheste		Town, Vill	age or City:	Tarrytown		Source	Water Type	(s): 🔳 Sur	face		
	g Month/Year:	1/2022 MM/YYYY		ort Submitted	12/2022 : MM/YYYY				☐ Pun		subsequent	
				CHL	ORINATION		UI	TRAVIOLET		N/OTHER		NTS
			Gas	seous	Liquid	Free	1.2					CAUSTIC
Date	Source(s) in use	Treated water volume	Cylinder weight (LBS.)	Chlorine used/Day	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by	Р Н	CALS USEN PERL DAY
(1	DEL	1,173			12	1.11				SC	7.43	8
2	DEL	1,044			10	1.09				SC	7.41	11
3	DEL	1,120			11	1.49				SC	7.57	10
4	DEL	1,267			14	1.51				SC	7.59	13
5	DEL	1,274			14	1.16				SC	7.49	8
6	DEL	1,253			13	1.33				SC	7.44	11
7	DEL	1,192			11	1.42				SC	7.54	12
8	DEL	1,165			12	1.30				SC	7.49	9
9	DEL	1,170			10	1.35				SC	7.57	10
10	DEL	1,149			11	1.46				SC	7.56	9
11	DEL	1,108	-	Ä	10	1.29				SC	7.48	8
					9	1.32				SC	7.60	7
12	DEL	1,090			9	1.41			-	SC	7.48	10
13	DEL	1,097				1.35				SC	7.53	7
14	DEL	1,109	_		11							
15	DEL	1,070			10	1.25	-			SC	7.64	9
16	DEL	1,066			10	1.20				SC	7.78	
17	DEL	1,207			13	1.29				SC	7.54	9
18	DEL	1,421		-	15	1.18				SC	7.53	11
19	DEL	1,162			11	1.15	_			SC	7.40	11
20	DEL	1,182			12	1.22				SC	7.36	12
21	DEL	1,143			11	1.19				SC	7.39	11
22	DEL	1,154			11	1.23				SC	7.39	11
23	DEL	1,186			10	1.22				SC	7.36	12
24	DEL	1,247			13	1.35				SC	7.30	10
25	DEL	1,169			13	1.24				SC	7.36	11
26	DEL	1,166			10	1.26				SC	7.39	9
27	DEL	1,138			10	- 1.21				SC	7.34	10
28	DEL	1,148			12	1.18				SC	7.30	11
29	DEL	1,206			15	1.23				SC	7.33	8
30	DEL	1,166			10	1.28				SC	7.33	9
31												
TOTAL		_35,043			343						1.5	286
AVG		1,168			11	1.28					7.47	10
AVG				_		1.20						1,0
	Mix Ratio = quartz sleeve la	st cleaned:	quar	ts/gallons of	NA Date UV lamp rep	olaced:	lorine adde	d to NA		ga	llons of w	ater in croc
Alarm a	tivation: 🗹 No	Yes If "Ye	es," date of a	ctivation:	MM//DD/YY			eatment Re			ata cul fe te	mg/
Reporte	Stephe	n G. Cowles			Ch	ief Operate	or	NY Cer	SDOH Ope tification N	rator Number:	Y00330)75

Water System Operation Report For Systems that Treat with Chlorine and/or Ultraviolet Radiation

ublic W	later System Na	Village of	rarrytowi	ii water S	шрріу		Public Water System ID: NY 5903461					
ounty:	Westchest	er	Town, Vill	age or City:	Tarrytown		Source	Water Type				
	ng Month/Year:	11/2022 MM/YYYY		ort Submitted	12/2022 MM/YYYY			☐ Ground ☐ GWUDI ■ Purchase with subsequent chlorination ☐ Purchase w/out subsequent chlorination ☐ 4 log treatment required				
				CHL	ORINATION		U	LTRAVIOLET	RADIATIO	ON/OTHER	TREATMEN	TS
			Gas	seous	Liquid	Free						
Date	Source(s) in use	Treated water volume (GALLONS/DAY)	Cylinder weight	Chlorine used/Day (LBS.)	Hypochlorite added to crock (GALLONS OR QUARTS)	chlorine residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	Quartz sleeve cleaned (YES/NO)	Checked by (INITIALS)		
(1	DEL									SC	.89	
2	DEL									SC	.71	
3	DEL									SC	.70	.869
4	DEL									SC	.60	
5	DEL									SC	.70	
6	DEL									SC	.70	
7	DEL									SC	.70	
8	DEL									SC	.70	
9	DEL									SC	.70	
10	DEL									SC	.70	
11	DEL			A						SC	.79	
12	DEL									SC	.65	
13	DEL									SC	.75	
14	DEL									SC	.74	
15	DEL									SC	.79	
16	DEL									SC	.78	
17	DEL									SC	.79	.898
18	DEL									SC	.83	
19	DEL									SC	.87	
20	DEL									SC	.81	
21	DEL									SC	.82	
22	DEL									SC	.92	
23	DEL									SC	.92	
24	DEL									SC	.80	
25	DEL					-				SC	.84	
26	DEL					1				SC	.70	
27	DEL				-					SC	.90	
28	DEL					120				SC	.90	
29	DEL									SC	.80	
30	DEL									SC	.80	
31												
TOTAL		14									23.30	1.76
AVG											.78	.883
hlorine	Mix Ratio =	NA	quar	ts/gallons of	NA	% ch	lorine adde	NA NA		ga	allons of wa	ter in cro
	quartz sleeve	No ☐ Yes If "Ye	MM//DD/YY	activation:	Date UV lamp rep	F		eatment Re				mi
eporte	d by: Stephe	en G. Cowles	0	,	Title:	ief Operat		Cer	SDOH Ope tification N	Number:	1Y00330	/5
Signatu	X.	ysh il	· C	ml		Date:	2/08/22 MM//DD/YY		erator Grad	1	В	

10270-044-03	Sample Type	Total	E conti		Population Served: 12,000				
Date of Sample	1. ROUTINE 2. REPEAT 3. TRIGGERED	Coliform Positive Y N	E. coli Positive Y N	Free Chlorine Residual	Number of microbiological monitoring samples requi	1001 (500.00)		
11/2/22	1			.64	Number of microbiological monitoring samples taker	10			
11/4/22	1			.79	Did a M&R violation occur?	Yes	VN		
11/7/22	1			.56	If "Yes," check reason (s) below: Actual number of samples is fewer than required				
11/10/22	1			.74	Did not collect/analyze repeat sample	ga i i novo i gran ga i sobile i kon ke ka			
11/12/22				HELDO DE	Did not collect/analyze for E. coli for positive total from routine / repeat sample	l coliform	l		
11/14/22	1			Unicessativ."	Was triggered source water monitoring required?	Yes	VN		
11/18/22					Did a MCL violation occur?	Yes	✓ N		
	- 2	5=8 =-4	50-11 TES	5000	If "Yes," check reason(s) below (see also Part 5, Table 6 for				
CONTROL VALUE				12Weere 1	For systems collecting less than 40 samples per m				
							е		
W-12-2-2-18-18-18-18-18-18-18-18-18-18-18-18-18-	13			1.10	For systems collecting 40 or more samples per month: more than 5% of the samples (routine and/or repeat) are positive				
	a						-+		
					sample was positive for total coliform (= E.coli MCL				
						an are o			
					microbiological monitoring samples during the month fol				
					a repeat sample collection unless waived (to minimus sample) in writing by the local health department.	m of one			
							t		
wles									
West	cheste	er Cou	nty La	abs aņo	d Research				
se describe:				891					
		Vi.		(A)					
i i					£				
		rd							
lem occur?	Did source	water byp	ass an exis	ting treatme	nt process in the system? If so, please explain:				
					90				
	11/4/22 11/7/22 11/10/22 11/12/22 11/14/22 11/18/22 11/25/22 11/29/22 wles Westonse describes	11/4/22	11/4/22	11/4/22	11/4/22	11/2/22 1	11/2/22 1		

Public W	ater System Nam	Village of T	Tarrytowr	Water S	upply		Public	Water Syste	em ID: NY	590346	31	
County:	Westchester			age or City:	Tarrytown .	,	Source	Water Type	e(s): 🔳 Sud 🔲 Gro	lace und		
Reportin	g Montb/Year:	12/2022 MM/YYY	Date Repo	rt Submitted	01 (2013 MM/YYY				☐ GW ■ Puro ☐ Puro	UDI chase with s		hlorination chlorination
		1		CHU	DRINATION		111	TRAVIOLET				JTS
			Gas	eous	Liquid	Free	ļ					CAUSTIC
		Treated water	Cylinder	Chlorine	Hypochlorite	chlorine	UV Unit	Intensity	Quartz sleeve	Cbecked		GAL.
Date	Source(s) in use	volume (GALLONS/DAY)	weight (LBS)	used/Day (LBS.)	added to crock	residual at entry point (mg/l)	active (YES/NO)	meter >70%	cleaned (YES/NO)	by (INITIALS)	bH	BAY
i	DEL	1,113		***************************************	12	ા.1થ			***************************************	SC	7.31	7
2	DEL	1,158			13	1.14				SC	7.33	6
3	DEL	1,204			15	1.08				SC	7 34	و ا
4	DEL	1,254			15	1.18				SC	7.34	7
5	DEL	1291			(7	1,17				SC	7.35	l (i
6	DEL	1,244		1	ilo	1.18				SC	7.31	Q.
7	DEL	1,143	And 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		13	1,20		1		SC	7.36	8
8	DEL	1,175		T	13	1.21		1	ļ	SC	7.30	10
9	DEL	1,494			كالا	1.28		1	<u> </u>	SC	7.33	12
10	DEL	1,128		İ	10	1,20		1		SC	7.32	12
11	DEL	1,129			14	1.27				SC	7.36	Ιί
12	DEL	1,336		İ	15	1,31	<u> </u>	İ	l	SC	7.35	11
13	DEL	1,270			13	1.25	<u> </u>	ļ		SC	7.33	10
14	DEL	1033		-	11	(1.68			}	SC	7.63	10 9 9
15	DEL	1,480		-		1.39	<u> </u>	 		SC	7.33	٥
16	DEL), 401			ما ا ا					SC	7.77	11
17	DEL				12	1,78		<u> </u>		SC		12
18	DEL	1,110						 		SC	7.42	17
19	DEL	1,325			عا ا 13	1.19	Į	1		SC	7,40	13
20		1,360				1,24	l			· · · · · · · · · · · · · · · · · · ·	7.42	٥
	DEL	1,739		-	11					SC	7.37	1
21	DEL	1,375			14	1.22		ļ		SC	7.40	12
22	DEL	1,340			14	11.12		ļ	ļ	SC	7.42	
23	DEL	1,164	·.·	ļ	10	(.17		 	<u> </u>	SC	7.44	٩
24	DEL	1,403			12	1,76				SC	7,48	<u>ll</u>
25	DEL	1,374			16	1.04		ļ	ļ	SC	7.34	111
26	DEL	1,278	*************	ļ	15	1,24	- 			SC	7,38	
27	DEL	1,406			16	1.82				SC	7.73	10
28	DEL	1150		-{	12_	1,23_			ļ	SC	7.40	10
29	DEL	1,427			15	1.35	<u> </u>			SC	7,42	15
30	DEL	1,388			12	1.31		ļ	ļ	SC	7.40	13
31	DEL	1,251		4	14	1.29	8		-	SC	7.42	10
TOTAL		39,521			428			1	ļ	ļ	/	309
AVG		1,275			14	1,28					7.40	10
	N	JA .			NA			, NA	-			
Chlorine	Mix Ratio =		quart	s/gallons of		% ch	lorine adde	d to		98	allons of wa	ater in crock
Date UV	quartz sleeve la	st cleaned:	!M//DD/YY	-	Date UV lamp rep	laced:	M//DD/YY					
Alarm ac	ctivation: 🗹 No	Yes If "Ye	s," date of a	ctivation:	MM//DD/YY	F	Required Tro	eatment Re	sidual Leve	યઃ	20	mg/l
Reported	d by: Stepher	n G. Cowles	n /) 1		ief Operat	or	NY Cer	SDOH Ope tification N	rator N lumber:	1Y00330	75
Signatur	e: (uplu d		rul-		Date:	01/09	1/23 Op	erator Grac	de Level:	В	

MM//DD/YY

Public W	ater System Nam	Village of 1	「arrytown	Water Si	upply		Public	Water Syste	m ID: N	, 590346	31	
County:	Westchester		Town, Villa	ige or City:	Tarrytown ,		Source	Water Type	☐ Gro	und		
Reportin	g Month/Year:	12 (2022	Date Repo	rt Submitted:	: 01/202	3			Pur	hase with s	ubsequent cl subsequent c required	
				CHLO	DRINATION		UI	ULTRAVIOLET RADIATION/OTHER TREATMENTS				
f		1		eous	Liquid	Free chlorine			Quartz			
Date	Source(s) in use	Treated water volume (GALLONS/DAY)	Cylinder weight (1881)	Chlorine used/Day (LBS.)	Hypochtorite added to crock (GALLONS OR QUARTS)	residual at entry point (mg/l)	UV Unit active (YES/NO)	Intensity meter >70%	sleeve cleaned (YES/NO)	Checked by (INTIALS)	NTV	poy
1	DEL									SC	,90	,882
2	DEL									SC	,80	
4	DEL DEL						<u></u>			SC SC	1,00	
5	DEL									SC	1.00	
6	DEL									SC	,30	
7	DEL		,							SC	,90	
8	DEL									SC	.94	
9	DEL									SC	,90	
10	DEL							ļ	<u> </u>	SC	,81	
11	DEL DEL									SC SC	.77	
13	DEL		· · · · · · · · · · · · · · · · · · ·							SC	, 91	
14	DEL							<u> </u>		SC	,78	
15	DEL						-	<u> </u>		SC	71	. 884
16	DEL									SC	.89	
17	DEL									SC	190	
18	DEL							ļ		SC	,80	
19	DEL									SC	,72	ļ
20	DEL DEL		<u>-</u>	 						SC	,83	
22	DEL							L	Martin 11 11 12 12 12 12 12 12 12 12 12 12 12	SC	,80	
23	DEL						<u> </u>	<u> </u>		SC	,80	-
24	DEL									SC	1.10	
25	DEL							1		SC	,90	
26	DEL							ļ		SC	1.00	ļ
27	DEL									SC	1,40	ļ
28 29	DEL DEL					ļ	_			SC	194	,878
30	DEL					 				SC	1.10	1010
31	DEL							· · · · · · · · · · · · · · · · · · ·	ļ	SC	1,00	
TOTAL											28,09	2,64
AVG				}			1	+		1	.91	,884
1	Time the second second second	IA	transministrations.	4	NΙΛ	1		NIA	i	1	: 	17001
Chlorine	Mix Ratio =	/A	quart	s/gallons of	NA	% chi	lorine adde	d to		ga	illons of wa	iter in crock
Date UV	quartz sleeve la:	st cleaned:	!M//DD/YY	_	Date UV lamp rep	laced:	M//DD/YY					
		Yes If "Ye	s," date of a	ctivation:	MM//OD/YY	R	Required Tr	eatment Re		16 <i>t</i>	20	mg/l
Reporte	d by:	G. Cowles	1 / 1	1	Chi Title:	ief Operato	or 1	NY: Cer	SDOH Ope tification N	lumber:	1Y00330 -	75
Signatur	e: Ku	plu el	Carl			Date:	O (<i>(0 9</i> MM//DD/YY	/23 _{0pe}	erator Grad	le Level:	В	

	Date of	Sample Type 1. ROUTINE	Total Coliform Positive	E. coti Positive	Free Chlorine Residual	Population Served: 12,000 Number of microbiological monitoring samples required: 10			
Sample Location	Sample	2, REPEAT 3, TRIGGERED		y N	(mg/l)	10			
MARYMOUNT	12/1/22	1			1.37	Number of microbiological monitoring samples taken:			
WASHINGTON ENGINE	12/5/22	1			78،	Did a M&R violation occur? Yes V No. If "Yes," check reason (s) below:			
VILLAGE HALL	12/7/22	1			51	Actual number of samples is fewer than required			
DOUBLETAGE HOTEL	12/9/22	1			,74	Did not collect/analyze repeat sample			
MAIN ST. FIREHOUSE	12/12/22	1			,58	Did not collect/analyze for E. coll for positive total colliorm			
	12/14/22				,42	Was triggered source water monitoring required? ☐ Yes ✓ No			
WARNER LIBERTY	12/21/21				Ì	Did a MCL violation occur? Yes ✓ N			
HVACKLEY SCHOOL					,86	If "Yes," check reason(s) below (see also Part 5, Table 6 for			
D.P.W.	12/23/22	!			.46	Additional information). For systems collecting less than 40 samples per month: two			
HIGH TANK	12/21/22				.49	or more of the samples (routine and/or repeat) are positive			
TAPPAN LANDING Apris	12/29/22	1			,74	for total coliform (= total coliform MCL violation). For systems collecting 40 or more samples per month: more			
						than 5% of the samples (routine and/or repeat) are positive for total coliform (= total coliform MCL violation).			
						The original sample was E.coli positive and at least 1 repeat			
						sample was positive for total coliform (= E.coli MCL violation).			
						Reminder: System must collect a minimum of five (5) routine			
						microbiological monitoring samples during the month following a repeat sample collection unless waived (to minimum of one			
						sample) in writing by the local health department.			
						As required by 5-1.72, "Operation of a Public Water System," a			
						copy of this form shall be sent to your local health department by the 10th calendar day of the next reporting period.			
						Transmission			
Sample collector(s): Steve Co									
Name of NYSDOH Certified Laboratory	West	cheste	er Cou	inty La	abs and	d Research			
Did any MCL violation occur? If so, plea		:							
NO									
Did an emergency or low pressure prol	olem occur?	Did source	water byp	ass an exis	ting treatme	ent process in the system? If so, please explain:			
NO									
Comments:									

WATER QUALITY

- 1. One set of Water Quality Parameters (WQP) samples are tested bi-weekly at the point of entry (POE), Shaft 10 Pumping Station.
- 2. Twenty set of WQP samples from 10 sites (Chlorine-BacT Locations) are tested bi-annually in the distribution system.
 - January to June
 - July to December

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: JM AG

Bottle No: A7933 B858 C0071

Collected By: S. COWLES

Collection Date: 01/13/2022 AT 10:25:00AM Submitted On: 01/13/2022 AT 10:45:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .81 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.43 NTU .871 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.7	mg/	5.0	01/20/2022	MO
EPA 200.7	Calcium	5960	ug/	_ 1000	01/18/2022	MO
SM22-2510B	Conductance	57.3	umhos/cr	n 0.5	01/21/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/	_ 1	01/19/2022	MO
EPA 200.7	Magnesium	1260	ug/	1000	01/18/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Michele Matos	QA Officer	Date Approved	I: 01/25/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2340 EMAIL 1/25/20)22 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

POE **Collection Point:**

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB

Bottle No: A7918 B1027 C0199

Collected By: S. COWLES

Collection Date: 01/27/2022 AT 10:50:00AM Submitted On: 01/27/2022 AT 11:18:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 1.08 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.36 PH .879 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.6	mg/L	5.0 01/28/2022	MO
EPA 200.7	Calcium	5070	ug/L	1000 02/01/2022	MO
SM22-2510B	Conductance	52.7	umhos/cm	0.5 02/04/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	17	mg/L	1 02/01/2022	MO
EPA 200.7	Magnesium	1070	ug/L	1000 02/01/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Michele Matos	QA Officer	Date Approved	: 02/07/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2378 EMAIL 2/7/202	2 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: POE

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 02/10/2022 AT 9:00:00AM **Submitted On**: 02/10/2022 AT 10:46:00AM

Bottle No: A7680 B31 C0030

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.00 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.40 PH .889 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.5	mg/L	5.0 02/18/2022	MO
EPA 200.7	Calcium	5810	ug/L	1000 02/16/2022	MO
SM22-2510B	Conductance	61.7	umhos/cm	0.5 02/24/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/L	1 02/17/2022	MO
EPA 200.7	Magnesium	1240	ug/L	1000 02/16/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	03/04/2022
Environmental	Laboratories			EMAIL 3/4/2022	
NYS ELAP # 10	108	Report Number:	2457		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: POE

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG

Collection Date: 02/24/2022 AT 10:00:00AM **Submitted On**: 02/24/2022 AT 1:14:00PM

Bottle No: A7769 B623 C1054

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.21 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.63 PH .887 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	16.4	mg/L	5.0 03/02/2022	MO
EPA 200.7	Calcium	5710	ug/L	1000 03/06/2022	MO
SM22-2510B	Conductance	55.9	umhos/cm	0.5 03/11/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 03/08/2022	MO
EPA 200.7	Magnesium	1190	ug/L	1000 03/06/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Robert Hilbra	andt QA Officer	Da	ate Approved :	03/20/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2517	EMAIL 3/21/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT PS

401 NEPERHAN RD

TARRYTOWN, NY

Collection Point: POE

addt'l Report To:

(914) 231-1620

ID of Source: CATSKILL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 03/10/2022 AT 10:03:00AM **Submitted On**: 03/10/2022 AT 10:13:00AM

Bottle No: A6192 B794 C0046

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 0.98 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.49PH 0.882 PO4

Method	Test Description	Results	Qualifier Units I	OL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	11.7	mg/L	5.0 03/18/2022	MO
EPA 200.7	Calcium	6200	ug/L	1000 03/25/2022	MO
SM22-2510B	Conductance	57.2	umhos/cm	0.5 03/11/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	1 03/28/2022	MO
EPA 200.7	Magnesium	1330	ug/L	1000 03/25/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Robert Hilbra	andt QA Officer		Date Approved :	03/30/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2544	EMAIL 3/30/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: POE

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG

Collection Date: 03/24/2022 AT 11:25:00AM Submitted On: 03/24/2022 AT 11:38:00AM

Bottle No: A6423 B963 C0607

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .68 Residual CI2:

TALEN SOLES

Comment :7.44 PH .964 POY

Method	Test Description	Results	Qualifier Units I	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.2	mg/L	5.0 03/25/2022	MO
EPA 200.7	Calcium	5640	ug/L	1000 03/31/2022	MO
SM22-2510B	Conductance	54.6	umhos/cm	0.5 04/01/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 04/03/2022	MO
EPA 200.7	Magnesium	1270	ug/L	1000 03/31/2022	МО

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estim	nate	H = exceeds holding time
Approved By	Robert Hilbran	dt QA Officer		Date Approved :	04/13/2022
Environmental NYS ELAP # 10		Report Numb	per: 2575	EMAIL 4/13/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: POE

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 04/07/2022 AT 7:36:00AM Submitted On: 04/07/2022 AT 8:11:00AM

Bottle No: A7545 B1281 C0705

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.51 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.46 PH .944 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	nalyzed on	Validator
<u>Inorganics</u>						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.4	mg/l	5.0	04/08/2022	MO
EPA 200.7	Calcium	6220	ug/l	1000	04/27/2022	MO
SM22-2510B	Conductance	59.9	umhos/cn	n 0.5 (04/21/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/l	L 1 (04/28/2022	MO
EPA 200.7	Magnesium	1350	ug/l	1000	04/27/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved: 04/29/2022

Environmental Laboratories

NYS ELAP # 10108

EMAIL 4/29/2022

Report Number: 2621

Report Number: 2621 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

ID of Source: DEL

Agency: Tarrytown, Village of

Robert Hilbrandt Jr.

Approved By

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Collection Date: 04/21/2022 AT 11:00:00AM Submitted On: 04/21/2022 AT 11:14:00AM

Bottle No: A8022 B1255 C0850

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Received By: KB

Free CI2: Residual CI2:

05/05/2022

Page 1 of 1

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.35 PH .919 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.3	mg	/L 5.0	04/25/2022	MO
EPA 200.7	Calcium	5910	ug	/L 1000	05/04/2022	MO
SM22-2510B	Conductance	74.5	umhos/o	m 0.5	04/29/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg	/L 1	05/05/2022	MO
EPA 200.7	Magnesium	1310	นดู	/L 1000	05/04/2022	MO

LOQ = Limit of Quantitation DL = Detection Limit J=value is an estimate H = exceeds holding time

Chief of Env. Lab Services

Environmental Laboratories EMAIL 5/5/2022

Report Number: 2640 NYS ELAP # 10108 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza

Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB KA

Bottle No: A7635 B737 C0684

Collected By: S. COWLES

Collection Date: 05/05/2022 AT 3:00:00PM **Submitted On**: 05/06/2022 AT 11:22:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.09 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.41 PH .989 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.7	mg/l	5.0	05/11/2022	MO
EPA 200.7	Calcium	5810	ug/l	1000	05/19/2022	MO
SM22-2510B	Conductance	59.3	umhos/cn	n 0.5	05/20/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/l	_ 1	05/20/2022	MO
EPA 200.7	Magnesium	1250	ug/l	1000	05/19/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	05/26/2022
Environmental NYS ELAP # 10		Report Number:	2712	EMAIL 5/26/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: AG KB

Collected By: S. COWLES

Bottle No: A7722 B26 C0598

Collection Date: 05/19/2022 AT 10:10:00AM **Submitted On:** 05/19/2022 AT 10:27:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.37 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.41 PH .968 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.5	mg/L	5.0 05/25/2022	MO
EPA 200.7	Calcium	6130	ug/L	1000 05/26/2022	MO
SM22-2510B	Conductance	59.8	umhos/cm	0.5 06/10/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	1 05/27/2022	MO
EPA 200.7	Magnesium	1370	ug/L	1000 05/26/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	06/14/2022
Environmental NYS ELAP # 10		Report Number:	2762	EMAIL 6/14/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB

Bottle No: A7582 B676 C0335

Collected By: S. COWLES

Collection Date: 06/02/2022 AT 10:45:00AM **Submitted On**: 06/02/2022 AT 12:35:00PM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.01 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.32 PH .991 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	11.8	mg/l	5.0	06/03/2022	MO
EPA 200.7	Calcium	5640	ug/l	_ 1000	06/06/2022	MO
SM22-2510B	Conductance	72.5	umhos/cn	n 0.5	06/17/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/l	_ 1	06/06/2022	MO
EPA 200.7	Magnesium	1320	ug/l	_ 1000	06/06/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved: 06/23/2022

Environmental Laboratories

NYS ELAP # 10108

EMAIL 6/23/2022

Report Number: 2801

Report Number: 2801 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

ID of Source : DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG JLM

Collection Date: 06/16/2022 AT 12:55:00PM **Submitted On**: 06/16/2022 AT 1:08:00PM

Bottle No: A6472 B962 C0508

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 1.10 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.46 PH 1.01 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.6	mg/L	5.0 06/22/2022	MO
EPA 200.7	Calcium	5590	ug/L	1000 06/27/2022	MO
SM22-2510B	Conductance	68.3	umhos/cm	0.5 07/01/2022	JLM
EPA 300.0	Fluoride by IC	0.643	mg/L	0.2 06/27/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Michele Matos	QA Officer	Date Approved :	07/11/2022

Environmental Laboratories NYS ELAP # 10108

(914) 231-1620

Report Number:

2844

EMAIL 7/11/2022

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT 10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: POE

ID of Source: DEL

Agency: Tarrytown, Village of

Robert Hilbrandt Jr.

Approved By

(914) 231-1620

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

addt'l Report To:

Received By: KB

Collected By: COWLES

Collection Date: 06/30/2022 AT 3:45:00PM Submitted On: 07/01/2022 AT 1:54:00PM

Bottle No: A8039 B694 C0541

PWS No.: 5903461

Source ID: 000 Type Descriptor:

pH:

Free CI2 : Residual CI2:

07/21/2022

Page 1 of 1

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.56 PH 1.01 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.2	mg/L	5.0 07/18/2022	MO
Test not er	ntered at log-in. Analyzed when found in refrigerato	or.			
EPA 200.7	Calcium	5640	ug/L	1000 07/19/2022	MO
SM22-2510B	Conductance	64.3	umhos/cm	0.5 07/15/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 07/20/2022	MO
EPA 200.7	Magnesium	1260	ug/L	1000 07/19/2022	MO

LOQ = Limit of Quantitation DL = Detection Limit J=value is an estimate H = exceeds holding time

Chief of Env. Lab Services

Environmental Laboratories EMAIL 7/21/2022

Report Number: 2886 NYS ELAP # 10108

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT 10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

ID of Source: DEL

Agency: Tarrytown, Village of

Robert Hilbrandt Jr.

Approved By

(914) 231-1620

One Depot Plaza

Attn: Steve Cowles

Tarrytown, NY 10591

Collected By: S. COWLES

Received By: KB AG

Collection Date: 07/14/2022 AT 8:15:00AM Submitted On: 07/14/2022 AT 9:02:00AM

Bottle No: A7949 B1065 C4549

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 1.32 Residual CI2:

08/02/2022

Page 1 of 1

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.45 PH .894 POY

Method	Test Description	Results	Qualifier Units I	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.6	mg/L	5.0 07/25/2022	MO
EPA 200.7	Calcium	5640	ug/L	1000 07/28/2022	MO
SM22-2510B	Conductance	67.1	umhos/cm	0.5 07/22/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 07/29/2022	MO
EPA 200.7	Magnesium	1160	ug/L	1000 07/28/2022	MO

LOQ = Limit of Quantitation H = exceeds holding time DL = Detection Limit J=value is an estimate

Chief of Env. Lab Services

Environmental Laboratories EMAIL 8/2/2022 Report Number: 2914 NYS ELAP # 10108

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: POE

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB

Collection Date: 07/28/2022 AT 12:40:00PM **Submitted On:** 07/28/2022 AT 1:26:00PM

Bottle No: A6363 B929 C5028

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.39 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.40 PH .963 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.1	mg/L	5.0 08/08/2022	MO
EPA 200.7	Calcium	5430	ug/L	1000 08/10/2022	MO
SM22-2510B	Conductance	60.2	umhos/cm	0.5 08/12/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	18	mg/L	1 08/11/2022	MO
EPA 200.7	Magnesium	1140	ug/L	1000 08/10/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	08/23/2022
Environmental NYS ELAP # 10		Report Number:	2970	EMAIL 8/23/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: JLM KB

Bottle No: A7927 B1061 C2442

Collected By: S. COWLES

Collection Date: 08/11/2022 AT 11:00:00AM Submitted On: 08/11/2022 AT 12:14:00PM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2 : Residual CI2:

Page 1 of 1

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment : PH 7.57 POY .864

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.7	mg/L	5.0	08/16/2022	MO
EPA 200.7	Calcium	5790	ug/L	1000	08/24/2022	MO
SM22-2510B	Conductance	55.01	umhos/cm	n 0.5	08/19/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	_ 1	08/25/2022	MO
EPA 200.7	Magnesium	1130	ug/L	1000	08/24/2022	MO

DL = Detection Limit		LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time	
Approved By	Michele Matos	QA Officer	Date Approved :	08/26/2022	
Environmental	Laboratories		EMAIL 8/26/202	2	

Report Number: 2987 NYS ELAP # 10108

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: MALTESE

Received By: ES LG

Collection Date: 08/25/2022 AT 8:50:00AM Submitted On: 08/25/2022 AT 9:31:00AM

Bottle No: A7807 B57 C1515

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2 : Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment : PH 7.45 POY .889

Method	Test Description	Results	Qualifier Units	DL/LOQ Ar	nalyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.6	mg/L	5.0 0	9/01/2022	MO
EPA 200.7	Calcium	5580	ug/L	1000 0	9/07/2022	MO
SM22-2510B	Conductance	63.8	umhos/cm	0.5 0	8/26/2022	JLM
EPA 300.0	Fluoride by IC	0.664	mg/L	0.2 0	9/01/2022	MO
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	. 10	9/07/2022	MO
EPA 200.7	Magnesium	1110	ug/L	1000 0	9/07/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Matos	s QA Officer		Date Approved :	09/12/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	3024	EMAIL 9/12/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

ID of Source: DEL

Agency: Tarrytown, Village of

Robert Hilbrandt Jr.

Approved By

(914) 231-1620

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Type Descriptor: 022

pH:

addt'l Report To:

Comment :7.56 PH .899 POY

Collected By: S. COWLES

Bottle No: A7941 B436 C2109

Received By: LG AG

Collection Date: 09/08/2022 AT 1:10:00PM

Submitted On: 09/08/2022 AT 1:28:00PM

11/03/2022

Date Approved :

PWS No.: 5903461

Source ID: 000

Sample chilled on arrival ?: YES

Residual CI2: Free CI2: 1.30

Sample Type: POT_DW

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
Inorganics							
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.6		mg/L	5.0	09/14/2022	MO
EPA 200.7	Calcium	5740		ug/L	1000	09/15/2022	MO
SM22-2510B	Conductance	62.6	um	hos/cm	0.5	09/16/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19		mg/L	1	09/16/2022	MO
EPA 200.7	Magnesium	1150		ug/L	1000	09/15/2022	MO

LOQ = Limit of Quantitation H = exceeds holding time DL = Detection Limit J=value is an estimate

Chief of Env. Lab Services

Environmental Laboratories EMAIL 11/3/2022

Report Number: 3170 NYS ELAP # 10108 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: POE

addt'l Report To:

Approved By

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ES LG

Collection Date: 09/22/2022 AT 11:20:00AM Submitted On: 09/22/2022 AT 1:24:00PM

Bottle No: A7732 B739 C2527

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Residual CI2: Free CI2: 1.62

10/21/2022

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.53 PH .867 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	16.6	mg/l	5.0 10/03/2022	MO
EPA 200.7	Calcium	6170	ug/l	1000 10/19/2022	MO
SM22-2510B	Conductance	66.5	umhos/cn	n 0.5 09/30/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/l	1 10/20/2022	MO
EPA 200.7	Magnesium	1180	ug/l	1000 10/19/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time

Environmental Laboratories EMAIL 10/21/2022 Report Number: 3140

QA Officer

NYS ELAP # 10108 Page 1 of 1 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: LG AG

Collection Date: 10/06/2022 AT 12:00:00PM Submitted On: 10/06/2022 AT 1:14:00PM

Bottle No: A8105 B167 C1502

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.60 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.57 PH .874 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.6	mg/	L 5.0	10/17/2022	MO
EPA 200.7	Calcium	5990	ug/	L 1000	10/24/2022	MO
SM22-2510B	Conductance	69.2	umhos/cr	n 0.5	10/14/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/	L 1	10/25/2022	MO
EPA 200.7	Magnesium	1200	ug/	L 1000	10/24/2022	MO

LOQ = Limit of Quantitation DL = Detection Limit J=value is an estimate H = exceeds holding time

Robert Hilbrandt Jr. 10/26/2022 Approved By Chief of Env. Lab Services Date Approved:

Environmental Laboratories EMAIL 10/26/2022 Report Number: 3153

NYS ELAP # 10108 Page 1 of 1 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point : P.O.E.

addt'l Report To:

ID of Source : DEL

Agency: Tarrytown, Village of

Robert Hilbrandt Jr.

Approved By

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: ES

Collected By: S. COWLES

Collection Date: 10/20/2022 AT 7:45:00AM Submitted On: 10/20/2022 AT 8:19:00AM

Bottle No: A7559 B1272 C3192

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.36 Residual Cl2:

11/03/2022

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: .86 NTU .871 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.0	mg/L	5.0 11/02/2022	MO
EPA 200.7	Calcium	5730	ug/L	1000 11/02/2022	MO
SM22-2510B	Conductance	57.4	umhos/cm	0.5 10/24/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 11/03/2022	MO
EPA 200.7	Magnesium	1200	ug/L	1000 11/02/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Chief of Env. Lab Services

Environmental Laboratories EMAIL 11/3/2022

NYS ELAP # 10108 Report Number: 3171 Page 1 of 1

(914) 231-1620

These analytical results relate only to the completified in this report

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ES

Collection Date: 11/03/2022 AT 1:10:00PM Submitted On: 11/03/2022 AT 1:35:00PM

Bottle No: A6380 B782 C4324

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Residual CI2: Free CI2: 1.36

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.56 PH .869 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.3	mg	/L 5.0	11/09/2022	MO
EPA 200.7	Calcium	6080	ug	/L 1000	11/17/2022	MO
SM22-2510B	Conductance	61.4	umhos/c	m 0.5	11/04/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg	/L 1	11/18/2022	MO
EPA 200.7	Magnesium	1210	ug	/L 1000	11/17/2022	MO

LOQ = Limit of Quantitation H = exceeds holding time DL = Detection Limit J=value is an estimate

Robert Hilbrandt Jr. 11/22/2022 Approved By Chief of Env. Lab Services Date Approved:

Environmental Laboratories EMAIL 11/22/2022 Report Number: 3213

NYS ELAP # 10108 Page 1 of 1 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point: P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: LG

Collection Date: 11/17/2022 AT 4:40:00AM Submitted On: 11/17/2022 AT 10:46:00AM

Bottle No: A8061 B1024 C0675

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 1.41 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.71 PH .898 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.1	mg/	L 5.0	11/18/2022	MO
EPA 200.7	Calcium	6340	ug/	L 1000	11/21/2022	MO
SM22-2510B	Conductance	59.2	umhos/cr	n 0.5	11/18/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/	L 1	11/22/2022	MO
EPA 200.7	Magnesium	1260	ug/	L 1000	11/21/2022	MO

LOQ = Limit of Quantitation H = exceeds holding time DL = Detection Limit J=value is an estimate

Robert Hilbrandt Jr. 11/22/2022 Approved By Chief of Env. Lab Services Date Approved:

Environmental Laboratories EMAIL 11/23/2022 Report Number: 3217 NYS ELAP # 10108

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY

Collection Point: P.O.E.

addt'l Report To:

Approved By

Michele Matos

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ES

Collection Date: 12/01/2022 AT 9:45:00AM Submitted On: 12/01/2022 AT 10:58:00AM

Bottle No: A7960 B858 C3594

PWS No.: 5903461

Source ID: 000 Type Descriptor: 022

pH:

Free CI2: 1.27 Residual CI2:

12/13/2022

Date Approved:

Sample chilled on arrival?: YES Sample Type: POT_DW

Comment : 7.56 PH .882 POY

Method Results Validator **Test Description** Qualifier Units DL/LOQ Analyzed on **Inorganics** SM22 2320B Alkalinity to pH 4.5 as mg CaCO3/L 14.1 5.0 12/05/2022 MO mg/L EPA 200.7 Calcium 6430 ug/L 1000 12/06/2022 MO SM22-2510B Conductance 67.2 umhos/cm 0.5 12/09/2022 JLM EPA 200.7 Hardness as Calcium Carbonate 21 mg/L 1 12/07/2022 MO EPA 200.7 1290 Magnesium ug/L 1000 12/06/2022 MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Environmental Laboratories EMAIL 12/13/2022 Report Number: 3264

QA Officer

NYS ELAP # 10108 Page 1 of 1 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point : P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ESAG

Collection Date: 12/15/2022 AT 11:15:00AM **Submitted On**: 12/15/2022 AT 12:38:00PM

Bottle No: A7745 B1029 C0613

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 1.46 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.44 PH .884 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.9	mg/L	5.0 12/21/2022	MO
EPA 200.7	Calcium	6210	ug/L	1000 01/03/2023	MO
SM22-2510B	Conductance	65.9	umhos/cm	0.5 12/22/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	1 01/04/2023	MO
EPA 200.7	Magnesium	1300	ug/L	1000 01/03/2023	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Mat	os QA Officer		Date Approved :	01/10/2023
Environmental Laboratories NYS ELAP # 10108	Report Number:	3332	EMAIL 1/10/2023	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: SHAFT #10 P.S.

401 NEPERAN RD

TARRYTOWN, NY 10591

Collection Point : P.O.E.

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza

Tarrytown, NY 10591

Attn: Steve Cowles

Received By: LG ES

Bottle No: A7813 B146 C5046

Collected By: S. COWLES

Collection Date: 12/29/2022 AT 10:00:00AM **Submitted On**: 12/29/2022 AT 10:43:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 1.12 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.62 PH .878 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.5	mg/L	5.0	12/30/2022	MO
EPA 200.7	Calcium	5840	ug/L	1000	01/04/2023	MO
SM22-2510B	Conductance	88.9	umhos/cm	0.5	01/12/2023	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/L	. 1	01/05/2023	MO
EPA 200.7	Magnesium	1240	ug/L	1000	01/04/2023	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved: 01/13/2023

Environmental Laboratories

NYS ELAP # 10108

Report Number: 3340

Report Number: 3340 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: **HIGH TANK**

13 CARRIAGE TRAIL

TARRYTOWN, NY

EFF PIPE TAP Collection Point:

addt'l Report To:

(914) 231-1620

ID of Source: CATSKILL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By:

Received By: KB

Collection Date: 01/05/2022 AT 10:54:00AM Submitted On: 01/05/2022 AT 11:45:00AM

Bottle No: A7957 B969 C3507

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 0.79 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.49 PH 0.846 P04

Method	Test Description	Results	Qualifier Units	DL/LOQ A	nalyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.0	mg/l	5.0	01/11/2022	MO
EPA 200.7	Calcium	6290	ug/l	_ 1000	01/07/2022	MO
SM22-2510B	Conductance	66.3	umhos/cn	n 0.5	01/21/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	22	mg/l	_ 1	01/10/2022	MO
EPA 200.7	Magnesium	1440	ug/l	_ 1000	01/07/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	01/25/2022
Environmental	Laboratories	D (N)	0040	EMAIL 1/25/2022	
NYS ELAP # 10	0108	Report Number:	2340		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: HIGH TANK

13 CARRAIGE TRAIL

TARRYTOWN, NY 10591

Collection Point: EFF. PIPE TAP

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG

Collection Date: 04/06/2022 AT 1:05:00PM Submitted On: 04/06/2022 AT 1:44:00PM

Bottle No: A8057 B1282 C0666

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .72 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.49 PH .874 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	nalyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.6	mg/	L 5.0 (04/08/2022	MO
EPA 200.7	Calcium	6020	ug/	L 1000 (04/07/2022	MO
SM22-2510B	Conductance	57.4	umhos/cr	n 0.5 (04/21/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/	L 1 (04/08/2022	MO
EPA 200.7	Magnesium	1270	ug/	L 1000 (04/07/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Michele Matos	QA Officer	Date Approved :	04/29/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

Report Number:

2621

EMAIL 4/29/2022

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WARNER LIBRARY

> WILDEY ST. TARRYTOWN, NY

OFFICE SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: SC

Received By: JM AG

Collection Date: 01/07/2022 AT 10:15:00AM Submitted On: 01/07/2022 AT 10:37:00AM

Bottle No: A7785 B1083 C1362

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 0.41 Residual CI2:

Sample chilled on arrival ?: YES Sample Type: POT_DW

Comment: 7.53 P04 . 822 P04

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.5	mg/L	5.0 01/11/2022	MO
EPA 200.7	Calcium	5960	ug/L	1000 01/18/2022	MO
SM22-2510B	Conductance	65.2	umhos/cm	0.5 01/21/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/L	1 01/19/2022	MO
EPA 200.7	Magnesium	1360	ug/L	1000 01/18/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Matos	QA Officer		Date Approved :	01/25/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2340	EMAIL 1/25/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WARNER LIBRARY

WILDEY ST

TARRYTOWN, NY 10591

OFFICE SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 04/13/2022 AT 9:10:00AM Submitted On: 04/13/2022 AT 12:33:00PM

Bottle No: A7966 B1025 C0859

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .45 Residual CI2:

Sample chilled on arrival ?: YES Sample Type: POT_DW

Comment :7.48 PH .861 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.2	mg/L	5.0	04/21/2022	MO
EPA 200.7	Calcium	6560	ug/L	1000	04/27/2022	MO
SM22-2510B	Conductance	70.3	umhos/cm	0.5	04/29/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	22	mg/L	. 1	04/28/2022	MO
EPA 200.7	Magnesium	1390	ug/L	1000	04/27/2022	MO

DL = Detection Limit LOQ = Limit of Qua		LOQ = Limit of Quantitation	antitation J=value is an estimate			H = exceeds holding time	
Approved By	Robert Hilbrand	dt Jr. Chie	f of Env. Lab	Services	Date Approved :	05/03/2022	
Environmental		Report	Number:	2631	EMAIL 5/3/2022		Page 1 of 1
NYS ELAP # 10108			report rumber.				Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WASHINGTON ENG.

WHITE PLAINS RD

TARRYTOWN, NY 10591

MENS ROOM SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: JLM KB

Collection Date: 01/10/2022 AT 10:50:00AM Submitted On: 01/10/2022 AT 1:40:00PM

Bottle No: A6342 B713 C0175

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .31 Residual CI2:

Sample chilled on arrival ?: YES Sample Type: POT_DW

Comment :7.49 PH .831 POY

Method	Test Description	Results	Qualifier Units D	L/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	22.9	mg/L	5.0 01/11/2022	MO
EPA 200.7	Calcium	9180	ug/L	1000 01/18/2022	MO
SM22-2510B	Conductance	61.6	umhos/cm	0.5 01/21/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	28	mg/L	1 01/19/2022	MO
EPA 200.7	Magnesium	1120	ug/L	1000 01/18/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Mato	s QA Officer		Date Approved :	01/25/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2340	EMAIL 1/25/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WASHINGTON ENGINE

> WHITE PLAINS RD TARRYTOWN, NY 10591

BATHROOM SINK Collection Point:

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: MALTESE

Received By: KB AG

Collection Date: 04/20/2022 AT 1:26:00PM Submitted On: 04/20/2022 AT 1:45:00PM

Bottle No: A7583 B1021 C0661

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .23 Residual CI2:

Sample chilled on arrival ?: YES Sample Type: POT_DW

Comment :7.49 PH .858 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
<u>Inorganics</u>						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	20.2	mg/L	5.0	04/25/2022	MO
EPA 200.7	Calcium	8920	ug/L	. 1000	05/04/2022	MO
SM22-2510B	Conductance	82.4	umhos/cm	0.5	04/29/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	27	mg/L	. 1	05/05/2022	MO
EPA 200.7	Magnesium	1120	ug/L	1000	05/04/2022	MO

DL = Detection Limit LO		LOQ = Limit of Quantitatio	= Limit of Quantitation J=value is an estimate		H = exceeds holding time	
Approved By	Robert Hilbrand	dt Jr. Ch	ief of Env. Lab Services	Date Approved :	05/05/2022	

Environmental Laboratories EMAIL 5/5/2022 Report Number: 2640 NYS ELAP # 10108

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DPW

addt'l Report To:

(914) 231-1620

4 DIVISION ST

TARRYTOWN, NY 10591

Collection Point: WATER DEPT. SINK

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB

Collection Date: 01/27/2022 AT 10:35:00AM **Submitted On**: 01/27/2022 AT 11:18:00AM

Bottle No: A8023 B1046 C0524

PWS No.: 5903461

Type Descriptor: 000 Source ID: 000

pH:

Free Cl2: .47 Residual Cl2:

Sample chilled on arrival ?: YES
Sample Type: POT_DW

Comment :7.53 PH .844 POY

Method **Test Description** Results Qualifier Validator Units DL/LOQ Analyzed on **Inorganics** SM22 2320B Alkalinity to pH 4.5 as mg CaCO3/L 13.2 5.0 01/28/2022 МО mg/L EPA 200.7 Calcium 5320 ug/L 1000 02/01/2022 MO SM22-2510B Conductance 55.8 umhos/cm 0.5 02/04/2022 JLM EPA 200.7 Hardness as Calcium Carbonate 18 mg/L 1 02/01/2022 МО EPA 200.7 Magnesium 1120 ug/L 1000 02/01/2022 MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Michele Matos	QA Officer	Date Approved :	02/07/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2378 EMAIL 2/7/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DPW

4 DIVISION ST

TARRYTOWN, NY 10591

Collection Point:

addt'l Report To:

WATER DEPT. SINK

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 04/22/2022 AT 10:50:00AM **Submitted On**: 04/22/2022 AT 11:16:00AM

Bottle No: A7958 B1076 C0961

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .53 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.56 PH .858 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.2	mg/L	5.0 04/25/2022	MO
EPA 200.7	Calcium	6320	ug/L	1000 05/04/2022	MO
SM22-2510B	Conductance	75.5	umhos/cm	0.5 04/29/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	1 05/05/2022	MO
EPA 200.7	Magnesium	1330	ug/L	1000 05/04/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation		ation J=valu	ie is an estimate	H = exceeds holding time	
Approved By	Robert Hilbran	dt Jr.	Chief of Env. Lab Service	s Date Approved	: 05/05/2022

Environmental Laboratories
NYS ELAP # 10108

(914) 231-1620

Report Number: 2640

EMAIL 5/5/2022

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: MARYMOUNT

MARYMOUNT AVE

TARRYTOWN, NY 10591

Collection Point: HYDRANT

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza

Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB AG

Bottle No: A7582 B544 C0190

Collected By: S. COWLES

Collection Date: 02/02/2022 AT 10:38:00AM **Submitted On**: 02/02/2022 AT 10:59:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .86 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.44 PH .858 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	nalyzed on	Validator
<u>Inorganics</u>						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.9	mg/l	5.0	02/03/2022	MO
EPA 200.7	Calcium	5700	ug/l	_ 1000	02/16/2022	MO
SM22-2510B	Conductance	55.3	umhos/cn	n 0.5	02/04/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/l	_ 1	02/17/2022	MO
EPA 200.7	Magnesium	1200	ug/l	_ 1000	02/16/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	02/18/2022
Environmental	Laboratories	5 (1)	0.400	EMAIL 2/18/2022	
NYS ELAP # 10	0108	Report Number:	2420		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: MARYMOUNT

MARYMOUNT AVE

TARRYTOWN, NY 10591

Collection Point: HYDRANT

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG

Collection Date: 05/02/2022 AT 11:15:00AM **Submitted On**: 05/02/2022 AT 1:16:00PM

Bottle No: A7588 B822 C3147

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .84 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.51 PH .887 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.5	mg/L	5.0 05/11/2022	MO
EPA 200.7	Calcium	6150	ug/L	1000 05/19/2022	MO
SM22-2510B	Conductance	70.8	umhos/cm	0.5 05/20/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	1 05/20/2022	MO
EPA 200.7	Magnesium	1320	ug/L	1000 05/19/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Matos	QA Officer		Date Approved :	05/26/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2712	EMAIL 5/26/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: VILLAGE HALL

1 DEPOT PLAZA

TARRYTOWN, NY 10591

Collection Point: LUNCH ROOM SINK

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 02/10/2022 AT 10:25:00AM **Submitted On**: 02/10/2022 AT 10:47:00AM

Bottle No: A7744 B932 C0905

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .33 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.49 PH .829 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Ar	nalyzed on	Validator
<u>Inorganics</u>						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.9	mg/L	5.0 0	2/18/2022	MO
EPA 200.7	Calcium	6160	ug/L	1000 0	2/16/2022	MO
SM22-2510B	Conductance	64.9	umhos/cm	n 0.5 0	2/24/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	_ 10	2/17/2022	MO
EPA 200.7	Magnesium	1250	ug/L	1000 0	2/16/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	03/04/2022
Environmental	Laboratories			EMAIL 3/4/2022	
NYS ELAP # 10	108	Report Number:	2457		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: VILLAGE HALL

1 DEPOT PLAZA

TARRYTOWN, NY 10591

Collection Point: KITCHEN SINK

ID of Source : DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: MALTESE

Received By: KB JLM

Collection Date: 05/12/2022 AT 9:45:00AM Submitted On: 05/12/2022 AT 10:44:00AM

Bottle No: A7785 B710 C952

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .32 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW Comment::PH 7.34 POY .0888

Method Results Qualifier Validator **Test Description** Units DL/LOQ Analyzed on **Inorganics** SM22 2320B 5.0 05/13/2022 Alkalinity to pH 4.5 as mg CaCO3/L 13.9 MO mg/L EPA 200.7 Calcium 6850 ug/L 1000 05/26/2022 MO SM22-2510B Conductance 66.9 umhos/cm 0.5 05/20/2022 JLM EPA 200.7 Hardness as Calcium Carbonate 23 mg/L 1 05/27/2022 МО EPA 200.7 1500 Magnesium ug/L 1000 05/26/2022 MO

DL = Detection Limit	LOQ = Limit of Quan	titation J=val	ue is an estimate	H = exceeds holding time
Approved By Michele	Matos	QA Officer	Date Approved :	06/02/2022
Environmental Laborato NYS ELAP # 10108		Report Number: 272	EMAIL 6/2/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location : HACKLEY SCHOOL

BENEDICT AVE

TARRYTOWN, NY 10591

Collection Point: HYDRANT

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG

Collection Date: 03/16/2022 AT 11:38:00AM **Submitted On**: 03/16/2022 AT 11:56:00AM

Bottle No: A6297 B544 C0709

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .61 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :PH 7.47 .854 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.5	mg/l	5.0	03/25/2022	MO
EPA 200.7	Calcium	6560	ug/l	1000	03/25/2022	MO
SM22-2510B	Conductance	60.0	umhos/cn	n 0.5	03/31/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	56	mg/l	_ 1	03/28/2022	MO
EPA 200.7	Magnesium	9500	ug/l	1000	03/25/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Robert Hilbra	andt QA Officer	Date Approved :	04/12/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	EMAIL 4/12/2022	2 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location : HACKLEY SCHOOL

BENEDICT AVE

TARRYTOWN, NY 10591

Collection Point: HYDRANT

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB JLM

Bottle No: A6422 B1105 C4068

Collected By: S. COWLES

Collection Date: 06/15/2022 AT 10:15:00AM **Submitted On:** 06/15/2022 AT 10:35:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .69 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :PH 7.49 POY .878

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.7	mg	/L 5.0	06/22/2022	MO
EPA 200.7	Calcium	5910	ug	/L 1000	06/27/2022	MO
SM22-2510B	Conductance	70.4	umhos/c	m 0.5	07/01/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg	/L 1	06/28/2022	MO
EPA 200.7	Magnesium	1260	ug	/L 1000	06/27/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	07/11/2022
Environmental		Report Number:	2844	EMAIL 7/11/2022	
NYS ELAP # 10)108	report rumber.	2044		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DOUBLETREE HOTEL

S. BROADWAY

TARRYTOWN, NY 10591

Collection Point: HYDRANT

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG

Collection Date: 02/24/2022 AT 11:15:00AM **Submitted On:** 02/24/2022 AT 1:14:00PM

Bottle No: A7860 B207 C0975

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .37 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.51 PH .851 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.0	mg/L	5.0 03/02/2022	MO
EPA 200.7	Calcium	5770	ug/L	1000 03/06/2022	MO
SM22-2510B	Conductance	54.7	umhos/cm	0.5 03/11/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 03/08/2022	MO
EPA 200.7	Magnesium	1200	ug/L	1000 03/06/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbran	dt QA Officer		Date Approved :	03/20/2022
Environmental		Report Numb	er: 2517	EMAIL 3/21/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DOUBLETREE HOTEL

S. BROADWAY

TARRYTOWN, NY 10591

Collection Point: HYDRANT

ID of Source: DEL

addt'l Report To:

Robert Hilbrandt Jr.

Approved By

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: RT JLM

Collection Date: 05/16/2022 AT 9:00:00AM **Submitted On**: 05/16/2022 AT 10:47:00AM

Bottle No: A7670 B372 C3078

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .27 Residual CI2:

06/01/2022

Page 1 of 1

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment : 7.59 PH .856 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.6	mg	L 5.0	05/25/2022	MO
EPA 200.7	Calcium	6490	ug	L 1000	06/01/2022	MO
SM22-2510B	Conductance	62.5	umhos/c	m 0.5	05/20/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	22	mg	/L 1	06/01/2022	MO
EPA 200.7	Magnesium	1440	ug	L 1000	06/01/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Chief of Env. Lab Services

Environmental Laboratories EMAIL 6/2/2022

NYS ELAP # 10108 Report Number: 2724

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: MAIN ST. FIREHOUSE

MAIN ST.

TARRYTOWN, NY

KITCHEN SINK **Collection Point:**

ID of Source: CATSKILL

addt'l Report To:

NYS ELAP # 10108

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 03/10/2022 AT 9:50:00AM Submitted On: 03/10/2022 AT 10:13:00AM

Bottle No: A7654 B698 C0527

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Residual CI2: Free CI2: 0.27

Page 1 of 1

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.57 PH 0.849 PO4

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.1	mg/	L 5.0	03/18/2022	MO
EPA 200.7	Calcium	6220	ug/	L 1000	03/25/2022	MO
SM22-2510B	Conductance	58.3	umhos/cr	n 0.5	03/11/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	54	mg/	L 1	03/28/2022	MO
EPA 200.7	Magnesium	9330	ug/	L 1000	03/25/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Robert Hill	brandt QA Officer	Date	e Approved : 03/30/2022
Environmental Laboratorie	s Report Number:		AIL 3/30/2022

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: MAIN ST FIREHOUSE

Robert Hilbrandt Jr.

Approved By

(914) 231-1620

MAIN ST

TARRYTOWN, NY 10591

Collection Point: KITCHEN SINK

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

vtown, NY 10591

Allii. Sieve Cowies

Collected By: S. COWLES

Received By: AG JLM

Collection Date: 06/06/2022 AT 10:15:00AM **Submitted On**: 06/06/2022 AT 10:44:00AM

Bottle No: A7747 B668 C0006

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .47 Residual Cl2:

06/23/2022

Page 1 of 1

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.49 PH .902 POY

Method	Test Description	Results	Qualifier Un	its	DL/LOQ A	Analyzed on	Validator
Inorganics							
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.7		mg/L	5.0	06/13/2022	MO
EPA 200.7	Calcium	5580		ug/L	1000	06/14/2022	MO
SM22-2510B	Conductance	72.1	umho	s/cm	0.5	06/17/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19		mg/L	1	06/15/2022	MO
EPA 200.7	Magnesium	1240		ug/L	1000	06/14/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Chief of Env. Lab Services

Environmental Laboratories

NYS ELAP # 10108

Report Number: 2801

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: TAPPAN LANDING APTS.

TAPPAN LANDING RD

TARRYTOWN, NY 10591

Collection Point: LAUNDRY ROOM SINK

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG

Collection Date: 03/24/2022 AT 11:05:00AM **Submitted On**: 03/24/2022 AT 11:38:00AM

Bottle No: A7620 B1064 C0834

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .68 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.60 PH .857 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.8	mg/L	5.0 03/25/2022	MO
EPA 200.7	Calcium	5960	ug/L	1000 03/31/2022	MO
SM22-2510B	Conductance	56.2	umhos/cm	0.5 04/01/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/L	1 04/03/2022	MO
EPA 200.7	Magnesium	1310	ug/L	1000 03/31/2022	MO

DL = Detection	Limit	LOQ = Limit of Qu	antitation	J=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrar	ndt	QA Officer		Date Approved :	04/13/2022
Environmental			Report Number:	2575	EMAIL 4/13/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: TAPPAN LANDING APTS.

TAPPAN LANDING RD

TARRYTOWN, NY 10591

LAUNDRY ROOM SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: AG KB

Collection Date: 06/22/2022 AT 12:08:00PM Submitted On: 06/22/2022 AT 12:49:00PM

Bottle No: A8074 B794 C0708

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .43 Residual CI2:

Sample chilled on arrival ?: YES Sample Type: POT_DW

Comment :7.43 PH .899 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.1	mg	/L 5.0	06/30/2022	MO
EPA 200.7	Calcium	5950	ug	/L 1000	06/29/2022	MO
SM22-2510B	Conductance	63.9	umhos/c	m 0.5	5 07/08/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg	/L 1	1 06/30/2022	MO
EPA 200.7	Magnesium	1250	ug	/L 1000	06/29/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate	H = exceeds holding time
Approved By Michele Matos	QA Officer	Date Appro	ved: 07/19/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	2878 EMAIL 7/1	9/2022 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: HIGH TANK

13 CARRAIGE TRAIL

TARRYTOWN, NY 10591

Collection Point: EFF PIPE TAP

ID of Source : DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 07/07/2022 AT 10:40:00AM **Submitted On**: 07/07/2022 AT 12:47:00PM

Bottle No: A7717 B1245 C3362

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .39 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment : 7.53 PH .861 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.9	mg/	L 5.0	07/18/2022	MO
EPA 200.7	Calcium	5440	ug/	L 1000	07/19/2022	MO
SM22-2510B	Conductance	70.6	umhos/cr	n 0.5	07/15/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	18	mg/	L 1	07/20/2022	MO
EPA 200.7	Magnesium	1140	ug/	L 1000	07/19/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved: 07/21/2022

Environmental Laboratories

NYS ELAP # 10108

EMAIL 7/21/2022

Report Number: 2886

Report Number: 2886 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: HIGH TANK

13 CARRAIGE TRAIL

TARRYTOWN, NY 10591

Collection Point: EFF PIPE TAP

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: ES

Bottle No: A7927 B685 C1596

Collected By: S. COWLES

Collection Date: 10/05/2022 AT 11:00:00AM **Submitted On**: 10/05/2022 AT 11:52:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .25 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.51 PH .838 PO4 temp. 14 deg C

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.0	mg/L	5.0	10/17/2022	MO
EPA 200.7	Calcium	36700	ug/L	. 1000	10/24/2022	MO
SM22-2510B	Conductance	69.7	umhos/cm	0.5	10/14/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	97	mg/L	. 1	10/25/2022	MO
EPA 200.7	Magnesium	1370	ug/L	. 1000	10/24/2022	MO
EPA 200.8	Manganese	19.6	ug/L	. 1.0	10/06/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved: 10/26/2022

Environmental Laboratories
NYS ELAP # 10108

(914) 231-1620

Report Number: 3153

EMAIL 10/26/2022

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: MAIN STREET FIREHOUSE

MAIN STREET

TARRYTOWN, NY

KITCHEN SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: COWLES

Received By: KB

Collection Date: 07/22/2022 AT 9:05:00AM Submitted On: 07/22/2022 AT 11:13:00AM

Bottle No: A7572 B699 C3234

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .72 Residual CI2:

Page 1 of 1

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.59 PH.884 P04

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	12.9	mg/L	5.0	07/26/2022	MO
EPA 200.7	Calcium	5920	ug/L	1000	08/10/2022	MO
SM22-2510B	Conductance	53.8	umhos/cm	0.5	08/05/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/L	. 1	08/11/2022	MO
EPA 200.7	Magnesium	1220	ug/L	1000	08/10/2022	MO

DL = Detection Limit		LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time	
Approved By	Michele Matos	QA Officer		Date Approved :	08/11/2022	
Environmenta		Report Number:	2942	EMAIL 8/11/2022	Page 1 of 1	

NYS ELAP # 10108 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: MAIN ST. FIREHOUSE

MAIN ST

TARRYTOWN, NY 10591

Collection Point: KITCHEN SINK

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ES KB

Collection Date: 10/14/2022 AT 8:35:00AM **Submitted On**: 10/14/2022 AT 9:07:00AM

Bottle No: A7917 B74 C1279

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .71 Residual Cl2:

Sample chilled on arrival?: YES

Sample Type: POT_DW

Comment :7.59 PH .842 POY

Method	Test Description	Test Description Results Qualifier Units DL/LOQ Analyzed on		DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.5	mg/L	5.0 10/17/2022	MO
EPA 200.7	Calcium	5980	ug/L	1000 11/02/2022	MO
SM22-2510B	Conductance	63.2	umhos/cm	0.5 10/21/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/L	1 11/03/2022	MO
EPA 200.7	Magnesium	1210	ug/L	1000 11/02/2022	MO

DL = Detection Limit

LOQ = Limit of Quantitation

J=value is an estimate

H = exceeds holding time

Approved By Robert Hilbrandt Jr.

Chief of Env. Lab Services

11/03/2022

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620 EMAIL Copy 5/8/2023

Date Approved:

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WASHINGTON ENGINE

> WHITE PLAINS RD TARRYTOWN, NY 10591

MENS ROOM SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

Approved By

Michele Matos

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB AG

Collected By: S. COWLES

Collection Date: 07/25/2022 AT 10:53:00AM Submitted On: 07/25/2022 AT 12:26:00PM

Bottle No: A7598 B923 C2802

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Residual CI2: Free CI2: .40

08/11/2022

Page 1 of 1

Date Approved:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.58 PH .880 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	16.4	mg/l	5.0 07/26/2022	MO
EPA 200.7	Calcium	6970	ug/L	1000 08/10/2022	MO
SM22-2510B	Conductance	59.0	umhos/cm	n 0.5 08/05/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	22	mg/l	1 08/11/2022	MO
EPA 200.7	Magnesium	1130	ug/l	1000 08/10/2022	MO

LOQ = Limit of Quantitation H = exceeds holding time DL = Detection Limit J=value is an estimate

Environmental Laboratories EMAIL 8/11/2022

QA Officer

Report Number: 2942 NYS ELAP # 10108 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WASHINGTON ENGINE

> WHITE PLAINS RD TARRYTOWN, NY 10591

MENS ROOM SINK **Collection Point:**

Robert Hilbrandt Jr.

Approved By

(914) 231-1620

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB ES

Bottle No: A7796 B794 C3507

Collected By: S. COWLES

Collection Date: 10/19/2022 AT 10:35:00AM Submitted On: 10/19/2022 AT 11:01:00AM

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .77 Residual CI2:

11/03/2022

Page 1 of 1

Date Approved :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment : 7.53 PH .849 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	21.2	mg/	L 5.0	11/02/2022	MO
EPA 200.7	Calcium	8230	ug/	L 1000	11/02/2022	MO
SM22-2510B	Conductance	69.2	umhos/cr	n 0.5	10/24/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	25	mg/	L 1	11/03/2022	MO
EPA 200.7	Magnesium	1060	ug/	L 1000	11/02/2022	MO

LOQ = Limit of Quantitation H = exceeds holding time DL = Detection Limit J=value is an estimate

Chief of Env. Lab Services

Environmental Laboratories EMAIL 11/3/2022

Report Number: 3171 NYS ELAP # 10108

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DPW

4 DIVISION ST

TARRYTOWN, NY 10591

WATER DEPT. SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

NYS ELAP # 10108

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collection Date: 07/27/2022 AT 10:50:00AM Submitted On: 07/27/2022 AT 1:12:00PM

Bottle No: A7722 B1046 C3288

PWS No.: 5903461

Collected By: S. COWLES

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .67 Residual CI2:

Page 1 of 1

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Received By: AG

Comment :7.48 PH .893 POY

Method	Test Description	Results	Results Qualifier Units DL/LOQ Analyzed on		Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.2	mg/L	5.0 08/08/2022	MO
EPA 200.7	Calcium	5730	ug/L	1000 08/10/2022	MO
SM22-2510B	Conductance	57.3	umhos/cm	0.5 08/05/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 08/11/2022	MO
EPA 200.7	Magnesium	1150	ug/L	1000 08/10/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	08/11/2022
Environmental		Report Number:	2942	EMAIL 8/11/2022	Dogo 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DPW

4 DIVISION ST

TARRYTOWN, NY 10591

Collection Point:

addt'l Report To:

WATER DEPT. SINK

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: LG

Collection Date: 10/27/2022 AT 10:00:00AM Submitted On: 10/27/2022 AT 12:08:00PM

Bottle No: A7534 B1065 C0640

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .68 Residual CI2:

Sample chilled on arrival ?: YES Sample Type: POT_DW

Comment :7.59 PH .852 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.5	mg.	L 5.0	11/02/2022	MO
EPA 200.7	Calcium	6920	ug.	L 1000	11/16/2022	MO
SM22-2510B	Conductance	59.8	umhos/c	m 0.5	10/28/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	22	mg.	L 1	11/17/2022	MO
EPA 200.7	Magnesium	1250	ug	L 1000	11/16/2022	MO

LOQ = Limit of Quantitation DL = Detection Limit

J=value is an estimate

H = exceeds holding time

Approved By

(914) 231-1620

Robert Hilbrandt Jr.

Chief of Env. Lab Services

Date Approved :

11/21/2022

Environmental Laboratories NYS ELAP # 10108

Report Number:

3213

EMAIL 11/22/2022

Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: MARYMOUNT

MARYMOUNT AVE

TARRYTOWN, NY 10591

Collection Point: HYDRANT

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: JLM KB

Collection Date: 08/11/2022 AT 11:15:00AM Submitted On: 08/11/2022 AT 12:14:00PM

Bottle No: A7873 B438 C073

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2 : Residual Cl2 :

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.55 PH .844 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	nalyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	13.9	mg/L	5.0	08/16/2022	MO
EPA 200.7	Calcium	5820	ug/L	1000	08/24/2022	MO
SM22-2510B	Conductance	59.0	umhos/cm	n 0.5	08/19/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	_ 1	08/25/2022	MO
EPA 200.7	Magnesium	1140	ug/L	1000	08/24/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	08/26/2022
Environmental		Report Number:	2987	EMAIL 8/26/2022	
NYS ELAP # 10	0108	Report Number.	2907		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: **MARYMOUNT**

MARYMOUNT AVE

TARRYTOWN, NY 10591

Collection Point: HYDRANT

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ES

Collection Date: 11/04/2022 AT 10:15:00AM Submitted On: 11/04/2022 AT 2:30:00AM

Bottle No: A6459 B793 C0609

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: 1.19 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment : 7.53 PH .870 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.5	mg/l	5.0	11/09/2022	MO
EPA 200.7	Calcium	5890	ug/l	1000	11/17/2022	MO
SM22-2510B	Conductance	59.7	umhos/cn	n 0.5	11/10/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/l	_ 1	11/18/2022	MO
EPA 200.7	Magnesium	1180	ug/l	1000	11/17/2022	MO

LOQ = Limit of Quantitation H = exceeds holding time DL = Detection Limit J=value is an estimate

Robert Hilbrandt Jr. 11/22/2022 Approved By Chief of Env. Lab Services Date Approved:

Environmental Laboratories EMAIL 11/22/2022 Report Number: 3213 NYS ELAP # 10108

Page 1 of 1 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: VILLAGE HALL

1 DEPOT PLAZA

TARRYTOWN, NY 10591

KITCHEN SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB AG

Collection Date: 08/19/2022 AT 10:40:00AM Submitted On: 08/19/2022 AT 12:26:00PM

Bottle No: A8078 B412 C0106

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Residual CI2: Free CI2: .24

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.59 PH .839 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
<u>Inorganics</u>					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.9	mg/L	5.0 08/25/2022	MO
EPA 200.7	Calcium	5880	ug/L	1000 08/24/2022	MO
SM22-2510B	Conductance	62.0	umhos/cm	0.5 08/26/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	. 1 08/25/2022	MO
EPA 200.7	Magnesium	1120	ug/L	1000 08/24/2022	MO

DL = Detection L	_imit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	08/30/2022
Environmental L		Report Number:	2993	EMAIL 8/30/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: VILLAGE HALL

1 DEPOT PLAZA

TARRYTOWN, NY 10591

KITCHEN SINK **Collection Point:**

ID of Source: DEL

addt'l Report To:

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ES AG

Collection Date: 12/07/2022 AT 11:35:00AM Submitted On: 12/07/2022 AT 1:09:00PM

Bottle No: A8069 B1237 C2616

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .51 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.51 PH .844 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.2	mg/L	5.0	12/14/2022	MO
EPA 200.7	Calcium	6940	ug/L	1000	12/13/2022	MO
SM22-2510B	Conductance	64.9	umhos/cm	n 0.5	12/16/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	23	mg/L	_ 1	12/14/2022	MO
EPA 200.7	Magnesium	1310	ug/L	1000	12/13/2022	MO

LOQ = Limit of Quantitation DL = Detection Limit J=value is an estimate H = exceeds holding time

Robert Hilbrandt Jr. 12/23/2022 Approved By Chief of Env. Lab Services Date Approved :

Environmental Laboratories EMAIL 12/23/2022 Report Number: 3289 NYS ELAP # 10108

Page 1 of 1 (914) 231-1620

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DOUBLETREE HOTEL

S. BROADWAY

TARRYTOWN, NY 10591

HYDRANT Collection Point:

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: KB JLM

Collection Date: 08/23/2022 AT 9:43:00AM Submitted On: 08/23/2022 AT 9:43:00AM

Bottle No: A7948 B1293 C0143

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .73 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.61 PH .839 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.0	mg/L	5.0 08/25/2022	MO
EPA 200.7	Calcium	5910	ug/L	1000 08/24/2022	MO
SM22-2510B	Conductance	67.4	umhos/cm	0.5 08/26/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	1 08/25/2022	MO
EPA 200.7	Magnesium	1100	ug/L	1000 08/24/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Matos	QA Officer		Date Approved :	09/02/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	3004	EMAIL 9/2/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: DOUBLE TREE

S BROADWAY

TARRYTOWN, NY

Collection Point: HYDRANT

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: COWLES

Received By: AG

Collection Date: 11/18/2022 AT 12:05:00PM **Submitted On**: 11/18/2022 AT 12:57:00PM

Bottle No: A7550 B508 C0947

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .62 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.26 PH .851 P04

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.4	mg,	L 5.0	11/28/2022	MO
EPA 200.7	Calcium	6270	ug	L 1000	11/21/2022	MO
SM22-2510B	Conductance	66.4	umhos/c	m 0.5	11/18/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg.	′L 1	11/22/2022	MO
EPA 200.7	Magnesium	1240	ug,	L 1000	11/21/2022	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved: 11/29/2022

Environmental Laboratories

NYS ELAP # 10108

Report Number: 3226

EMAIL 11/29/2022

Report Number: 3226 Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WARNER LIBRARY

WILDEY ST

TARRYTOWN, NY

OFFICE SINK **Collection Point:**

addt'l Report To:

(914) 231-1620

ID of Source: CATSKILL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: KB ES

Bottle No: A8067 B636 C0723

Collected By: COWLES

Collection Date: 09/09/2022 AT 11:40:00AM Submitted On: 09/09/2022 AT 12:18:00PM

PWS No.: 5903461

Type Descriptor: 022 Source ID:

pH:

Free CI2: .40 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment: 7.59 PH: 869 PO4

Method	Test Description	Results	Qualifier Units	DL/LOQ A	nalyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.4	mg/L	5.0	09/14/2022	MO
EPA 200.7	Calcium	5740	ug/L	1000	09/15/2022	MO
SM22-2510B	Conductance	64.1	umhos/cm	0.5	09/16/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	19	mg/L	. 1	09/16/2022	MO
EPA 200.7	Magnesium	1140	ug/L	1000	09/15/2022	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Matos	QA Officer		Date Approved :	09/20/2022
Environmental Laboratories NYS ELAP # 10108	Report Number:	3051	EMAIL 9/20/2022	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: WARNER LIBRARY

WILDEY ST

TARRYTOWN, NY 10591

Collection Point: OFFICE SINK

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Received By: ES AG

Collected By: S. COWLES

Collection Date: 12/15/2022 AT 11:30:00AM **Submitted On**: 12/15/2022 AT 12:38:00PM

Bottle No: A8105 B679 C0269

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .52 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.52 PH .884 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	nalyzed on	Validator
<u>Inorganics</u>						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.0	mg/L	5.0	12/21/2022	MO
EPA 200.7	Calcium	6400	ug/L	1000	01/03/2023	MO
SM22-2510B	Conductance	69.3	umhos/cm	n 0.5	12/22/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	_ 1 (01/04/2023	MO
EPA 200.7	Magnesium	1330	ug/L	1000	01/03/2023	MO

DL = Detection L	_imit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	01/10/2023
Environmental L		Report Number:	3332	EMAIL 1/10/2023	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location : HACKLEY SCHOOL

BENEDICT AVE

TARRYTOWN, NY 10591

Collection Point: HYDRANT

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: LG ES

Collection Date: 09/12/2022 AT 12:35:00PM **Submitted On**: 09/12/2022 AT 1:33:00PM

Bottle No: A6480 B792 C1255

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: .83 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.52 PH .874 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	15.7	mg/L	5.0 09/14/2022	MO
EPA 200.7	Calcium	6140	ug/L	1000 09/15/2022	MO
SM22-2510B	Conductance	58.2	umhos/cm	0.5 09/16/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/L	1 09/16/2022	MO
EPA 200.7	Magnesium	1110	ug/L	1000 09/15/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	09/20/2022
Environmental	Laboratories			EMAIL 9/20/2022	
NYS ELAP # 10	0108	Report Number:	3051		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: HACKLEY SCHOOL

BENEDICT AVE

TARRYTOWN, NY 10591

HYDRANT Collection Point:

addt'l Report To:

(914) 231-1620

ID of Source: DEL

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: LG AG

Collection Date: 12/21/2022 AT 10:20:00AM Submitted On: 12/21/2022 AT 12:55:00PM

Bottle No: A7881 B608 C1132

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .86 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.50 PH .858 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ Analyzed on	Validator
Inorganics					
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.6	mg/L	5.0 12/21/2022	MO
EPA 200.7	Calcium	6310	ug/L	1000 01/03/2023	MO
SM22-2510B	Conductance	76.8	umhos/cm	0.5 12/22/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	21	mg/L	1 01/04/2023	MO
EPA 200.7	Magnesium	1350	ug/L	1000 01/03/2023	MO

DL = Detection Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By Michele Matos	QA Officer		Date Approved :	01/10/2023
Environmental Laboratories NYS ELAP # 10108	Report Number:	3332	EMAIL 1/10/2023	Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: TAPPAN LANDING APTS.

TAPPAN LANDING RD

TARRYTOWN, NY 10591

Collection Point: LAUNDRY ROOM SINK

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: ESAG

Collection Date: 09/23/2022 AT 10:05:00AM **Submitted On**: 09/23/2022 AT 10:43:00AM

Bottle No: A7683 B771 C0473

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free Cl2: 1.02 Residual Cl2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment :7.56 PH .839 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	Analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	16.0	mg/	L 5.0	10/03/2022	MO
EPA 200.7	Calcium	5930	ug/	L 1000	10/19/2022	MO
SM22-2510B	Conductance	66.4	umhos/cr	n 0.5	09/30/2022	JLM
EPA 200.7	Hardness as Calcium Carbonate	20	mg/	L 1	10/20/2022	MO
EPA 200.7	Magnesium	1150	ug/	L 1000	10/19/2022	MO

DL = Detection	Limit	LOQ = Limit of Quantitation	J=value is an estimate		H = exceeds holding time
Approved By	Michele Matos	QA Officer		Date Approved :	10/21/2022
Environmental	Laboratories	Day and Mayork and	2440	EMAIL 10/21/2022	
NYS ELAP # 10	0108	Report Number:	3140		Page 1 of 1

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location: TAPPAN LANDING APTS.

TAPPAN LANDING RD

TARRYTOWN, NY 10591

Collection Point: LAUNDRY ROOM SINK

ID of Source: DEL

addt'l Report To:

(914) 231-1620

Agency: Tarrytown, Village of

One Depot Plaza Tarrytown, NY 10591

Attn: Steve Cowles

Collected By: S. COWLES

Received By: LG ES

Collection Date: 12/29/2022 AT 10:15:00AM **Submitted On**: 12/29/2022 AT 10:43:00AM

Bottle No: A8102 B1083 C0164

PWS No.: 5903461

Type Descriptor: 022 Source ID: 000

pH:

Free CI2: .74 Residual CI2:

Sample chilled on arrival ?: YES

Sample Type: POT_DW

Comment : 7.59 PH .851 POY

Method	Test Description	Results	Qualifier Units	DL/LOQ A	analyzed on	Validator
Inorganics						
SM22 2320B	Alkalinity to pH 4.5 as mg CaCO3/L	14.2	mg/l	5.0	12/30/2022	MO
EPA 200.7	Calcium	6620	ug/l	1000	01/12/2023	MO
SM22-2510B	Conductance	85.7	umhos/cn	n 0.5	01/12/2023	JLM
EPA 200.7	Hardness as Calcium Carbonate	22	mg/l	_ 1	01/13/2023	MO
EPA 200.7	Magnesium	1340	ug/l	1000	01/12/2023	MO

DL = Detection Limit LOQ = Limit of Quantitation J=value is an estimate H = exceeds holding time

Approved By Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved: 01/13/2023

Environmental Laboratories

NYS ELAP # 10108

Report Number: 3340

Report Number: 3340 Page 1 of 1

WATER CONSUMPTION

Monthly Water Consumption Data

<u>Shaft-10 Pump Station Meter – NYC Water Supply</u> <u>Monthly Water Consumption (gallons)</u>

Month	2022
January	36,445,400
February	30,836,000
March	36,218,000
April	35,727,000
May	38,871,000
June	41,275,000
July	53,036,000
August	54,893,000
September	41,942,000
October	38,864,000
November	35,041,000
December	39,521,000
TOTAL	482,669,400

Greenburgh Meter – Sunnyside Lane (Southeast Section of the Village) 2022 Water Consumption (gallons)

TOTAL	3,956,000
-------	-----------